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Summary:   We formulated the problem of finding a priority vector from an interval reciprocal matrix as 
an Euclidean center problem.  The interesting result is that this formulation always has a solution and 
provides knowledge about the feasible region.  The sign of the objective function of the Euclidean center 
formulation predicts the existence of a feasible solution that satisfies the constraints given by the interval 
reciprocal matrix.  We showed that, if the Euclidean center objective function is positive, there are 
multiple plausible solutions, if it is negative, there no feasible solutions, and if it is equal zero, the 
feasible region consists of a single point.   
 
1. Introduction 

Assessing priorities through the Analytic Hierarchy Process (AHP) involves elicitation of pairwise 
judgments concerning strength of preference (or dominance) among the subjects of comparison. This 
strength of preference is articulated by choosing a  scale value from the 1-9 comparison scale (Saaty, 
1980, 1986). An interesting problem is when the decision maker is unable to state his preference exactly 
due to, perhaps, uncertainty regarding the appropriate scale value to represent his strength of preference. 
Another case when an interval may be preferred to a single value is when a group of decision makers 
cannot reach consensus on a single scale value to represent their joint preference. In cases like these, the 
decision maker(s) may still have a preference "direction" in the sense that one element is preferred to the 
other but the strength of preference ranges over some scale values rather than be represented by a single 
one. Thus, in comparing elements i and j, preference ( ija ) may be stated through an inequality such as: 

ij ij ijl a u≤ ≤ , where lij and uij represent the lower and upper bounds, respectively, of preference taken as 

values from the 1-9 comparison scale. Filling a comparison matrix requires the elicitation of n(n-1)/2 
entries before evaluation of the respective eigenvector is carried out. In this case, by analogy, one has to 
elicit at most (it is possible to elicit less, as will be discussed later) the same number of inequalities of the 
type shown above, we obtain the interval judgment matrix IJ(A). 
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Using intervals to express preference poses technical problems in processing these judgments to arrive at 
a representative preference structure. There have been two types of solutions to this problem: simulation 
(Arbel and Vargas, 1992; Saaty and Vargas, 1987) and linear programming (Arbel, 1991).  The 
simulation approach assumed some sort of distribution (e.g., uniform) in the  interval ( , )ij ijl u , and 
generated a sample of size N of reciprocal comparison matrices, 1( , , )NA A… . The principal right 



eigenvector of each matrix hw , h=1,…,N, is a sample point in the hyperplane 1T =w e . Given the sample 
of eigenvectors it is possible to derive preference probabilities such as [ ]i jP >w w  and determine how 

the hyperplane  1T =w e  is partitioned into preference regions.   The linear programming approach 
provides solutions to the following problem: 
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 (1.1) 

The solutions to this problem are the vertices of the feasible region.  In (Arbel and Vargas, 1992) we 
showed that the average of the vertices coincides in the limit with the average of the simulation model.  
However, there are other ways of combining the vertices of the feasible region.  One of them is using the 
concept of Euclidean center. 
 
2. Euclidean Centers 

Interval judgments generate a set of inequalities.  Addressing this set of inequalities should ignore vertex 
information and address the inequalities directly. The Euclidean center is a point in space from which one 
inscribes the largest sphere inside the constraints whose intersection forms the feasible region.  It should 
be noted, however, that Euclidean centers may not be unique and they do not exist for empty feasible 
regions.  In these cases the set of inequalities are not solvable either, i.e., there exists no point that 
satisfies all the inequalities.  

All existing methods use feasible points to generate a set of weights that satisfies the set of inequalities 
derived from the interval judgments.  The feasible points are either interior to the feasible region or 
exterior, in which case the only ones available are the vertices of the feasible region.  This point-wise 
depiction of preference information ignores the interval nature of the original preference statements.  
Constrained optimization problems are defined by a set of constraints defining a region in space. The 
specific region is, of course, affected by the nature of the constraints. The latter may be either linear or 
nonlinear, but the question of centers applies to both. Essentially, this question addresses the issue of how 
to inscribe an object within the region defined by the constraints. More than one centering approach can 
be defined which leads to a different inscribed object and a different derivation procedure for both the 
inscribed object as well as its center. In this paper we focus our main attention on the Euclidean center, 
and its uses in the Interval AHP. 

The concept of a center has been a problem of some interest a few decades ago and has seen a rekindled 
interest in recent years. While it is important to many theoretical and applied problems—ranging from 
location theory to interior-point linear programming algorithms—specific literature on the subject is quite 
scant. The first publication that has treated the question of centers in an explicit manner is that of Huard 
(1967). In this paper, he develops a general algorithm for optimizing a concave function over a convex 
feasible region with the use of centers and bounds. The generality of the algorithm is maintained through 
the general definition of the distance that was used. However, due to the general formulation considered 
in that paper, only necessary conditions for distance were mentioned. Sonnevend (1985) defined an 
analytic center and used it to develop a linear programming approach based on Karmarkar’s interior-point 
projective algorithm (Karmarkar, 1984). Boggs et al. (1989) used Huard’s method of centers to enhance 
interior-point methods using dual affine trajectories. Fagan and Falk (1996) introduced a method of 
Euclidean centers for solving single-objective linear programming problems. Their work uses Euclidean 
center without identifying its origin, which seems to defy an original source. In a recent book by G.B. 
Dantzig, the idea of a Euclidean center is mentioned as an exercise to the student (Dantzig and Thapa, 



1997, Ex. 6.1, p.151). Parenthetically we add that the suggestion in the book will not lead to the proper 
center. 

The above references treat the issue of centers in an explicit manner. This issue appears in a less explicit 
manner in other areas as well. Location theory, for example, has traditionally been interested in 
establishing the best location for placing a service node in a given network (see, e.g., Hansen et al, 1987). 
While not addressed as a centering problem specifically, such a problem is exactly that of finding a 
center. One may be interested in finding a point that is as close as possible to all nodes in the network or, 
conversely, finding a node that is as far away as possible from all nodes in a network (for disposing of 
waste, for example). Such problems measure distances from nodes that form a network.  
 
As seen from the above survey, more than one center has been developed in the past and more than one 
application has been identified (Sadka, 1998). Limiting our discussion to linear systems of constraints 
simplifies the way we derive these centers. It does not, however, reduces the possibilities available for 
consideration. A center can be defined in more than one way and each way leads to different analytic and 
geometrical implications.  Specifically, we note that the intersection of a set of linear constraints for a 
bounded linear programming problem defines a polytope in n-dimensional space. When one talks about a 
center of such a polytope one usually refers to the point from which one inscribes some object contained 
by the polytope. The reasoning behind this operation, as well as the type of object used—be it a sphere, 
or an ellipsoid, for example— leads to different definitions for a center. When one wishes to be as far as 
possible from all facets of the polytope— which is equivalent to inscribing the largest sphere — we 
derive the Euclidean center. 
 

3. Defining a Distance 

Given a vector, a, a hyperplane having this vector as its normal satisfies 0,T =a x  for every point, x, in 
the hyperplane. Translating the hyperplane (which, by definition, passes through the origin) we have a 
linear variety or an affine transformation, where the defining equation is now provided by 

0( ) 0T − =a x x . Arranging terms we arrive at the familiar expression for a hyperplane given by  
 0

T T=a x a x � b  (3.1) 
Projecting any vector, say 1,x  on another vector, say q, is accomplished through a projection operator, P. 
The projected vector, 1x̂ , is then given by 

 ( ) 1

1 1 1ˆ P T T−
= =x x q q q q x  (3.2) 

The discussion thus far is depicted in Figure 3.1 below. 
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Figure 3.1. Projecting a vector on a normal to a plane 

Comment:  



The projected vector, 1x̂ , provides the distance from the point 1,x  to the origin along the vector q. To 
evaluate the distance from the point 1x̂ , to the nearest point on the translated hyperplane we have to 
account for the translation, 0x . This results in 

 ( ) ( ) ( )1

1 0 1 0P T T−
= − = −d x x q q q q x x  (3.3) 

which simplifies to 
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The length of this vector is provided by its Euclidean norm, which results in 
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We can now use this result to find the distance from any given point to the subspace spanned by a given 
constraint. Denoting by ia  the ith row ( 1 i m≤ ≤ ) of an m × n matrix, A, the ith boundary to the 
constraints polytope is then given by ,i

ib=a x  which is one of the defining equations of the polytope in 
n-dimensional space.  
 
The distance from a point x R∈ n  to a hyperplane described through ,i

ib=a x  is given by  
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Dividing each constraint by its Euclidean norm, 
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  Note that the definition in Equation (3.6) implies that every hyperplane divides the n-

dimensional space into two halfspaces, one from each side of the hyperplane. All the vectors on the side 
which includes the origin, have a positive value for id  (the distance from the hyperplane), and all the 
vectors on the other side have a negative value for id .  In general, a set of linear constraints, S, is defined 

through { }| An= ∈ℜ ≤S x x b .  We see, therefore, that in case that a hyperplane of the set S  is defined 

as i
ib≤a x , the distance of a vector ∈x S  from the hyperplane is calculated by ˆ ˆ i

i id b= −a x . Similarly, 

in case of a hyperplane defined as i
ib≥a x , we use the formulation ˆˆ i

i id b= −a x .  After performing some 
simple calculations we have 
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Note, that using (3.7) for calculating the distances id , the condition 0id ≥  ensures that the vector x , 
from which the distances are measured, is feasible (that is, satisfies the constraint no matter if it written as 

i
ib≤a x  or i

ib≥a x ). This is similar to the use of auxiliary variables—slacks or surpluses—when 
transforming an LP problem A ≤x b  or A ≥x b  to its standard form A =x b . 

4. The Euclidean Center 

Using the distance measure of a point to a constraint, we introduce now the concept of Euclidean center. 
Let S  be the interior space of an n-dimensional polytope with m  facets. A vector n∈x R  is inside the 



polytope when ∈x S . Assuming that the distance between x  and the i -th facet, where 1,...,i m= , is 
( )id x , the Euclidean center of this polytope is found by solving the problem given by: 

 { }{ }i1
Max Min ( )

i m
d

≤ ≤∈x S
x  (4.1) 

This problem may be transformed into a linear programming problem by introducing an auxiliary 
variable α , which is maximized according to the following formulation 
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                                        . .s t   

2
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i id b+ =a x a        1,...,i m=  (4.2) 

        idα ≤ ,   1,...,i m=  
        0id ≥ ,   1,...,i m=  

Example 4.1: Consider a set of linear constraints, S, defined by 

1 1 2: 1C x x+ ≥  

2 1 2: 5C x x− ≤  

3 1 2: 2 10C x x+ ≤  

4 1: 0C x ≥  

5 2: 0C x ≥  

The Euclidean center of this region is obtained by solving the following LP problem: 
        Max  α  
s.t 

1 2 12 1x x d+ − =  

1 2 22 5x x d− + =  

1 2 32 5 10x x d+ + =  

1 4 0x d− =  

2 5 0x d− =  
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whose solution is given by 
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Figure 4.1. Euclidean center—computational method 

The largest inscribed circle is of radius 1.910α =  and is centered at point 1 2[ , ] [1.910,1.910]x x = . The 
active constraints are 3 4 5, ,C C C  with 3 4 5d d d α= = = .  

Before we apply the notion of Euclidean center, we need to briefly mention some special cases 
encountered when deriving Euclidean centers of a polytope. Because the Euclidean center is derived as a 
solution of an LP problem, it may have one solution, infinite number of solutions or none at all (as in the 
case of an infeasible set). It may also result with an unbounded solution for an unbounded feasible set. 



However, we note that this center always remains interior to the underlying polytope, and it is insensitive 
to redundant constraints. These properties are special to the Euclidean center. For example, the MinMax 
center, defined through solving ( ){ }{ }i1 i m

Min Max d
x S

x
∈ ≤ ≤

, may result on an edge of the polytope. The analytic 

center, defined through ( )i
1 i m

Max d
x S

x
∈

≤ ≤
∏ , may significantly change in the presence of redundant 

constraints. 

5. The Euclidean Center of a reciprocal Matrix with Interval Judgments 

Following the formulation outlined above, the MaxMin Euclidean center of the interval judgment 
problem is given by the solution to the following LP problem:   
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 (5.1) 

while the MinMax Euclidean formulation is given by: 
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Note that the difference between the two formulations is the set of constraints 0idα − ≤  in the MaxMin 
problem versus 0idα − ≥  in the MinMax problem. 

Example 5.1. Consider the simple 2-by-2 matrix: 
1 [2,4]

1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

The feasible region is given in Figure 5.1. 
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Figure 5.1. The MaxMin Solution 

 
The MinMax solution is given in Figure 5.2. 
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Figure 5.2. The MinMax Solution 

 
Example 5.2. Consider the following interval judgment matrix: 

1 [2, 4] [3,5]
1 [1, 2]

1
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The MaxMin problem is given by: 



1 2 4

1 3 5

2 3 6

1 2 7

1 3 8

2 3 9

1 2 3

. .,
0, 1, 2,3

4 17 0,

5 26 0,

2 5 0,

2 5 0,

3 10 0,

1 2 0,
1

0, 1,...,9

i i

k

Max
s t
w d i =

w w d

w w d

w w d

w w d

w w d

w w d
w w w

d k =

α

α

− =

− + =

− + =

− + =

− − =

− − =

− − =
+ + =

− ≤

 

 

 

 

and the solution is given by:  
1 2 3

1 2 3 4 5 6 7 8 9

0.616,  0.22,  0.164
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The MinMax solution is given by 

1 2 3
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Note the MaxMin Euclidean center is a feasible solution equidistant from the non-redundant constraints.  
However, in general, it is not equidistant from the vertices of the feasible region.  Solving the problems  
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we obtain the vertices of the feasible region defined by the interval judgments.  The number of vertices is 
at most 2n.  In the example at hand we have the vertices given in Table 5.1. 
 

Table 5.1. The vertices of the feasible region in Example 5.2 

minw1 maxw1 minw2 maxw2 minw3 maxw3 average MaxMin
w1 0.545455 0.689655 0.666666 0.571429 0.625 0.6 0.616367 0.616504
w2 0.272727 0.172414 0.166667 0.285714 0.25 0.2 0.224587 0.219775
w3 0.181818 0.137931 0.166667 0.142857 0.125 0.2 0.159046 0.163721  
 
Note that the MaxMin Euclidean center is not the average of these vertices although it is close to it.  
Because the MaxMin solution is equidistant from all the preference constraints, it considers all the 
constraints equally important.  The MinMax center does not always provide a solution that satisfies the 
interval preference constraints.  So, for interval judgements one should consider the MaxMin Euclidean 
center. 

A problem of interest is if the original interval reciprocal matrix yields a problem that does not have a 
feasible solution for (1.1), i.e., there does not exist a vector of priorities 1( , , )nw w… such that 
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Note, that in this case, the value of α  is negative. 
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Theorem: * 0α ≥  if and only if ≠ ∅W  

Proof:  If  ∅W= , then there exist i and j for which either i
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and * 0kd <  which implies that * 0α < . 
 
If * 0α ≥ , then because * hdα ≤  for all h, we have 0hd ≥  for all h, and hence, 

21i ij j ij h ij jw u w u d u w= − + ≤ , for all h, and 21i ij j ij k ij jw l w l d l w= + + ≥ , for all k, and ≠ ∅W . 

 
Corollary: If W  consists of one point then * 0α = , but the converse is not true. 

Proof:  By the Theorem, * 0α ≥ .  In addition, if W  consists of one point then ij iju l= , for all i and j, 

then i
ij ij

j

w
u l

w
= =  for all i and j.  Thus, we have 0hd = , for h = n+1,…,n2, and * 0α =  follows.  On the 



other hand, if * 0α = , then there are i* and j* for which *
* * * *

*

i
i j i j

j

w
u l

w
= =  and hence the corresponding 

*hd and *kd  are equal to zero, but the remaining 0hd > , for all h≠h*, k*.      

6. Conclusions 

When the problem is consistent (interval judgments collapse into a single point) the eigenvector method 
and the Euclidean center coincide and alpha =0.   When alpha > 0 there is an infinite set of consistent 
answers.  When alpha < 0 the system is not solvable, i.e., the feasible region, defined by the constraints 
built on the interval judgments as inequalities in an LP model, is empty.  The parameters id can be 
grouped into two sets: the first corresponds to the priorities, w, and the second, corresponds to the 
constraints (preference statements); the second group could be used to identify the most offending 
preference statement.  Specifically, the largest absolute d from the second group could be used to identify 
the direction of change needed in those preference statements to improve the consistency measured 
(expressed) by the value of alpha.  The objective of identifying this direction is to ensure that the system 
is solvable and hence by increasing alpha to a positive value solvability is achieved. 

References 
 
Arbel, A. (1993), “An Interior Multiobjective Linear Programming Algorithm,” Computers Ops Res., 

Vol. 20, No. 7, pp. 723-735. 
Arbel, A., Korhonen, P. (1996), “Using Aspiration Levels in an Interactive Interior Multiobjective Linear 

Programming Algorithm,” European Journal of Operational Research, Vol. 89, pp. 193-201. 
Boggs, P.T., Domich, P.D., Donaldson, J.R., and Witzgall, C. (1989), “Algorithmic Enhancements to the 

Method of Centers for Linear Programming Problems,” ORSA Journal on Computing, Vol. 1, No. 3, 
pp. 159-171. 

Dantzig, G.B., and Thapa M.N. (1997), Linear Programming 1: Introduction, Springer-Verlag. 
Fagan, J.T., and Falk J.E. (1996), “A Method of Euclidean Centers,” in Computers Ops Res., Vol. 23, 

No. 1, pp. 13-25. 
Hansen, P., Labbe, M., Peeters, D., Thisse, J.F., and Henderson J.V. (1987), “Systems of Cities and 

Facility Location,” Fundamentals of Pure and Applied Economics 22. 
Huard, P. (1967), “Resolution of Mathematical Programming with Nonlinear Constraints by the Method 

of Centers,” in J. Abadie, (Ed.) Nonlinear Programming, North-Holland, pp. 209-219. 
Karmarkar, N.K. (1984), “A New Polynomial Time Algorithm for Linear Programming,” Combinatorica 

4, pp. 373-395. 
Rosen, J.B. (1960), “The Gradient Projection Method for Nonlinear Programming,” SIAM, Vol. 8, No. 1, 

pp.181-217. 
Sadka, R. (1998), “Theory of Centers and its use in Multiple-Objective Linear Programming,” M.Sc. 

thesis, Tel-Aviv University, (unpublished manuscript). 
Steuer, R.E. (1986), Multiple Criteria Optimization: Theory, Computation and Application, Krieger. 
Sonnevend, G. (1985), “An Analytical Center for Polyhedrons and New Classes of Global Algorithms for 

Linear (Smooth, Convex) Programming,” Proceedings 12th IFIP Conference on System Modelling, 
Budapest. 

Arbel, A. and L.G. Vargas, "Preference Programming and Preference Simulation: Robustness Issues in 
the AHP."  European Journal of Operational Research 69 (1993) pp. 220-209. 

Arbel, A., "Approximate Articulation of Preference and Priority Derivation," European Journal of 
Operational Research  (1992) . 

Saaty T.L.,, "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, 1986. 
Saaty, T.L., The Analytic Hierarchy Process, McGraw-Hill Publications, 1980. 
 Saaty T.L., and L.G. Vargas, "Inconsistency and Rank Preservation," Journal of Mathematical 

Psychology 28, 3, (1984), pp. 205-214. 
Saaty, T.L., and L.G. Vargas, "Uncertainty and Rank Order in the Analytic Hierarchy Process", European 

Journal of Operational Research, Vol. 32, pp. 107-117, 1987. 


