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Summary: In the general theory of flow and potential, flow is induced by potential difference, and
it is shown that pairwise comparison flow is also induced by priority weight potential difference in
the logarithmic least squares estimation(LLSE) of node priority weight of a pairwise comparison
design graph. While in the electrical circuit network, Kirchhoff’s Current Law(KCL) holds on a
cutset basis, Kirchhoff’s Voltage Law(KVL) holds on a tieset basis, and Ohm’ Law holds on a link
basis, but in the LLSE of pairwise comparison design graph, the conservation law of pairwise
comparison flow(KCL-like plus Ohm-like law) holds on a cutset basis. Using this law(or set of
equations) systematically, topological formulae for the expression of priority weight potential are
given for some design graphs.

1. Introduction

In the general theory of flow and potential, flow is induced by potential difference, and this paper
shows that pairwise comparison flow is also induced by priority weight potential difference in the
logarithmic least squares estimation(LLSE) of node priority weight of a pairwise comparison design
graph.

Rest of the paper consists as follows.

Chapter2: LLSE of node priority weight
Chapter3: Optimality condition of LLSE
Chapter4: Flow and potential in LLSE
Chapter5: Examples

Chapter6: Topological formula
Chapter7: Conclusion

2. LLSE of node priority weight
2.1 Pairwise comparison design graph

We will introduce pairwise comparison design graph G(V, E) to express what pairwise comparison
is made among the items. The graph G (V, E) is a directed-edge graph, V is the vertex set, and E is
the edge set. An item to be evaluated corresponds to a vertex, and if there is an edge between two
vertexes, then it means that a pairwise comparison measurement took place between the two items.
Multiple edges are allowed between two vertexes.

2.2 Ratio model and its logarithmic linear model
We assume two ratio models (1) and (2) for the pairwise comparison measurement between item i
and item j.
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Here, a directed edge (i, j) originates at vertex i and terminates at vertex j. If we take the
logarithm of both sides in (1) and (2), then the logarithmic linear models (2) and (3) are obtained.
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Here, (i, j ) is an edge connecting item i and item j, &

value when item i is compared how many times more important than item | (&;; issimply called

is pairwise comparison measurement

measurement (i, j)), X; is the weight of item 1, e,

j is the error multiplier accompanied with

measurement (i, J ), Rij is the tendency of overestimation or underestimation accompanied with
measurement (i, j ), Gij is also the tendency of overestimation or underestimation accompanied

with measurement (where R, ~Gj'), a; =loga;, u, =logx;, &; =loge;, and so on,

ij? j !
Hereafter a; is simply called measurement (i, J), and if multiple measurements are allowed on
the same edge (i, J ), the third index would be needed to distinguish the measurements done on the
same edge (i, J ), such as by (i, J;1), (i, J ;2), and (i, j ;3). But for the simplicity of notation the
third index will be neglected.
Notice that (1) and (2) are not linear in X, but (3) and (4) are linearin « and U, given R and
G.

3. Optimality condition of LLSE

3.1 Formulation of LLSE
The problem of estimating the priority weight vector of items U = {ui} S0 as to minimize the sum
of logarithmic errors is mathematically formulated as

minimize Z(u): Z(gii )2 (5)
subject to Zui =K (6)

, where the summation z in (5) is taken over (i, j)e E ,and KX is an appropriate constant.

3.2 Optimality condition
Since the LLSE problem ((5) and (6)) is an equality-constrained minimization problem, its
necessary condition for the optimality is obtained by differentiating the Lagrange function L (U, 4)

with respectto U and A and putting each of them at zero.
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The set of equations (8) and (9) is the optimality condition for the LLSE. Then, the following
theorems hold.
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(Theorem 1)
The Lagrange multiplier A for the constraint (6) is 0 both in Model (1) and model (2). o
(Proof]  First, we consider the case of Model (1).

Since it holds that
—:—ZZ(R,ka (U —u))+2 3 (Ryer — (U —u;)+ 2 (ieV) (10
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and S—L =0 (i€ V), summing up (10) for each i € V and putting it at zero,
U;

weget N A=0. Here, N =V| 7(i)={k/(i,k)e £}, O(i)=1{k/(k,i)e E}

Notice that the term corresponding to some specific edge (|, m) appears twice, once in the first term

of any equation and the second time in the second term of another equation with different signs, thus
canceling each other. Next, we consider the case of Model (2). Instead of (10), we have (11).
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The same argument goes and finally it holds that & 4 =0. (Q.E.D.)
(Theorem 2]
In Model (1), the following inflow = outflow conservation-like law holds.

ZR.ka ZRk,ak,—z (U —u )= D (u, —u;) (ieV) (12)

kET keO | keT(l) kEO(i)

Assuming the reciprocity, (a; -a; = 1), it can be expressed in an undirected-edge manner by (13).

ZR,ka,k: > (U —uy) (ieV) (13)

keA keA()
Here, A(i) {k| )e E or (k,i)eE}. o
(Proof] Slnce A =0 in(10), (12) is directly induced. (Q.E.D.)

Note that a simple formula like (13) does not hold in Model (2). So Model (1) is preferred to Model
(2) also from the viewpoint of theoretical beauty.

4. Flow and potential in LLSE

In resistor electrical networks, the Ohm’s Law holds on an edge, such as RI=V, Kirchhoff’s
Current Law (KCL) holds on a cutset, and Kirchhoff’s Woltage Law (KVL) holds on a tieset. In
LLSE of pairwise comparison graph, what kind of laws will hold and will not hold?

4.1 KVL
In an electrical network, KVL says that edge voltage integrated along any loop (tieset) is zero.



Since variable U; is assigned to each node and its difference (U; —U;) appears in its error model

(3), consider it as its potential. Then, (U; —Uj ) is the potential difference between nodes i and j,

and can be called “voltage”. Since the potential is assigned to each node and their difference between
nodes can be considered voltage, a KVL-like law naturally holds in our LLSE of pairwise
comparison graph.

4.2 Ohm’s Law + KCL
Equation (13) can be interpreted as a combination of Ohm’s Law and KCL. Since ¢«;, is the

logarithm of pairwise measurement (i,K ), it can be interpreted as the evaluation flow oriented from

node i to node K. The left hand side of (13) or (12) is summation of all the evaluation flows
coming to and going from node i, and the right hand side of (13) or (12) is the summation of
potential difference. If Eqg. (13) holds on an edge basis, it is Ohm’s Law, but Eq.(13) does hold on a
node basis. Therefore, Theorem 2 can be extended to Theorem 3.

(Theorem 3]

In Model (1), inflow=outflow conservation-like law holds at any cutest C.

D Ry = Z(“i—“j) (14)

(i.i)C (i.j)c

5. Examples
We have shown the concept of evaluation flow and evaluation potential in Chapter 4 and we will
explain them through examples in this chapter.

(Example 1 : Model (1) with R; =1]

Consider a design graph of Fig.1, where there are 4 items and 5 pairwise comparison measurements
take place. They are measurements (1,2), (2,3), (1,3), (1,4) and (3,4);

a,=1a,=2 a,=2 a,=5 a,=6 and R, =1 forall (i,j), €E.

Fig.1 Four-node five-edge design graph for example 1

LLSE solutions are:
X, =1.7783, x, =1.9839, x, =1.1067, x, =0.2561

u, =0.25, u, =0.2975, u, =0.044, u, =-0.5915.

Here, u,, U,, U;, and U, are interpreted as evaluation potentials and they are shown on the

undirected-edge version of the design graph (Fig. 2), together with evaluations flows «;, = 0.0,
a,; =0.301, «,, =0.301, o, =0.69897, and «,, =0.778.
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Fig.2 Flows and potentials for Example 1

First, consider a cutest C, = {(1, 2), (1, 3), (1, 4)} the set of edges connecting vertex 1 and the
other vertexes. The sum of evaluation flows through c, is «,, +a,; + a;,, which is 1.0, and the
sum of evaluation potential differences at C, is (u1 —u2)+(u1 —u3)+ (u1 —u4), which is also
1.0. Therefore, Theorem 2 and Theorem 3 are confirmed to hold for the cutest C; in Example 1.

Next, consider a cutest ¢, = {(1, 2),(1,3),(4,3)}, the set of edges connecting vertex set {1, 4}
and vertex set {2, 3}. The sum of evaluation flows through ¢, is «;, + a;; — a5, , which is
-0.477, and the sum of evaluation potential differences at C, is (u1 —u2)+(ul—u3)+(u4 —ua),

which is also —0.477. Therefore, Theorem 3 is confirmed to hold also for the cutest C, in Example
1.
(Example 2: Model (1) with different R ]

Consider a design graph shown in Fig.3, where measurement values are the same as in Example 1,
but R, arenotall equal to 1;

R,=1R,=1R;=2R,=1R, =2

© 0

R13:2
a14:51R14: @ 34:61R34:2

Fig.3 Four-node five-edge design graph for Example 2

LLSE solutions are:
X, = 2.1147, x, = 2.482, x, =1.4565, X, =0.1308

u, =0.3252, u, =0.3948, u, =0.1633, u, =-0.8833.



Evaluation potentials u,, uU,, U;, and U,, and evaluation flows «,,,a;, ., and o, ,

are shown on the undirected-edge version of the design graph (Fig.4), together with resistance values
Ry Rz Ry Ry and Ry,

u, =0.3948

a,, =0.301

u, =0.1633

u, =-0.8833
Fig.4 Flows and potentials for Example 2

First, consider a cutest ¢, = {(1, 2),(1,3), (1, 4)}, the set of edges connecting vertex 1 and the
other vertexes. The sum of evaluation flows through C,, multiplied by each resistance value, is
R,a, + Ra; + Ry,a,, which is 1.3, and the sum of evaluation potential differences at ¢, is
(ul —u2)+(u1 —u3)+(ul —u4), which is also 1.3. Therefore, Theorem 2 and Theorem 3 are

confirmed to hold for the cutest 1 in Example 2.
Next, consider a cutest C, = {(1, 2), (1, 3), (4, 3)}, the set of edges connecting vertex set {1,4} and

vertex set {2,3}. The sum of evaluation flows through C,, multiplied by each resistance value, is
Ry,a,, + Risa; —Ry,05,, which is —0.954, and the sum of evaluation potential differences at
C, is (ul -u, )+ (ul - u3)+ (u4 - ug), which is also —0.954. Therefore, Theorem 3 is confirmed

to hold also for the cutest C, in Example 2.

6. Topological formula
In this chapter we will consider some classes of design graphs with no multiple edge and of Model

(1) with all Rij.S being equal to 1, and derive topological formulae for the expression of prioritoy
weight potentials.

6.1 Complete design graph
For a complete graph with & vertexes, Theorem 3 holds at each node cutest.

iaii :i(ui —uj) i=1L.,N (15)
j=1

=t

N

Noting Zuj =0, (16) or (17) is obtained, which is the well-known geometric mean formula for
=1

LLSE solution.
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Here, notice that «; +a; =0 or a;-a; =1 because of the reciprocity assumption, and that

either measurement (i, j) or measurement (j,i) takes place because no multiple edge is allowed
in the design graph.

6.2 Tree design graph
For a tree graph, Theorem 3 holds at each edge cutest.
a; =U, - U, (i,j)e E (18)

Choose any vertex, say vertex K, as a reference point (uk = 0). Since the topology of design
graph is tree, there exists only one path, or one chain of edges from vertex i to vertex j, let the chain
be {(i, jl), (jl, jz), vy (jm,k)}, then (19) or (20) is obtained by applying Eq.(18) successively

along the chain {(i, j, ), (iy, §, ) oonr (oK)}

U =ay +oa; +.+a;, (19)

hiz
Xi = aijl ) ajljz et ajmk (20)

6.3 1-cyclic design graph
Consider a design graph with » vertexes where edges are arranged as (1, 2), (2, 3), (3, 4),....(~
—1,N) and (NV, 1). This class of graphs is called “cycle” or “loop”. Any simple cutest contains

two edges, say (i, j) and (k,1). Then, Theorem 3 holds at the cutest.
oy +ay :(ui_uj)+(uk_ul) ((i,j), (ka)EE) (21)

Rearranging these equations and setting vertex n as a reference point (u N :O), following
formula is obtained.

N —i
U =i T Aigjp ety +——A (22)
N
AzO‘N,N-1+0‘N—1,N—z+---+0‘32+0‘21+0‘1N (23)
N
Xi =85, Qi 8y n oV (24)
=Qy g Qygnp 8y 18y gy (25)

6.4 Complete graph minus one edge
Consider a design graph where one edge is deleted from a complete graph. Let the graph has

N vertexes and the deleted edge be (l, N ) Then, Theorem 2 or Theorem 3 holds at vertex
i(21, N).
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So the geometric mean formula works for the priority weight potential for an item with complete
matching. For the vertexes 1 and » , following equations hold.

N-1
(N - 2)(“1 _UN)= (alk + akN) (29)
v
(N_Z)(UN _ul)= (O‘M +ak1) (30)
k=2
N-1
M, = Zalk +(u1 _UN) (31)
k=
NUN:Za +(uy —u,) (32)

N-1 N-1
{ Ay + Z(alk Ty )} (31)

k=1 k:2
1 N-1 1 N—l(
=— Ay + ay +a 32
N N {é MK N N 2 — M k1 )} ( )
1
1\~
N-1 N-1 )
X = Ay j X [H Ay - akNj (33)
k=1 k=2
1
1\~
N-1 N-1 N2
Xy = ( aMJX[HaM 'ali (34)
k=1 k=2

(Example 3] Applying the formulae (28), (33) and (34) to the four-node five-edge design graph of
Example 1 (Fig.1), the followings are obtained.

1

X, = (all a;p A3 a4y, )Z (35)
1
X, = (a21 Qyy Ay3 Ayy )Z (36)
1 1
Ay = (a21a14 )E (a23a34 )E (37)

1
X3 = (a31 Ajp Az Agy )4 (38)



1
Xy = (a41 Ay Ay a44)4 (39)
1 1
A, = (a41312 )E (a43 ag, )E (40)

Inserting a, =1 a, =2, a,=2, a,=5 a, =6 and assuming the reciprocity,
X, =1.7783, x, =1.9839, x, =1.1067, X, =0.2561 and obtained, which coincide with those
in Example 1.

7. Conclusion

We have introduced the concept of evaluation flow and evaluation potential. Pairwise comparison
corresponds to flow and priority weight corresponds to potential. It is shown that evaluation flow is
induced by evaluation potential difference at a cutest, which can be interpreted as a cutset-version of
KCL +Ohm’s law in the electrical resistance-circuit network. Applying the obtained laws and
equations, we have also presented some topological formulae for priority weight, which will be
useful in investigating the meaning of LLSE solution.
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