
ISAHP Article: Wedley Comparison Accuracy – Implications for Deriving Priorities and 

Consistency, 2014, Washington D.C., U.S.A. 

International Symposium of 

the Analytic Hierarchy 

Process 

1 Washington, D.C. 

June 29 – July 2, 2014 

 

COMPARISON ACCURACY – IMPLICATIONS FOR DERIVING 

PRIORITIES AND CONSISTENCY 

William C. Wedley 

Beedie School of Business 

Simon Fraser University 

Burnaby, B. C. CANADA 

E-mail: wedley@sfu.ca 

 

 

ABSTRACT 

 

Some paired comparisons are more accurate than others. Which ones? If we knew, then 

we could use the more accurate comparisons to derive the priority vector and maybe 

discard the less accurate ones. Using experiments where the true comparison values are 

known, this study investigates which comparisons are more accurate and whether a 

priority vector should be based upon partial information. In general, comparisons to the 

least dominant alternative are found to be more accurate. It is recommended that the first 

n-1 comparisons be made in reference to the least dominant alternative. Thereafter, 

changes in priorities and degree of predicted consistency can be used to determine 

whether the comparison process can be stopped. An ancillary finding is that consistency 

alone is not a reliable indicator of accuracy. In order to achieve accuracy, the DM must 

be both knowledgeable about the task being evaluated and conscientious in making 

evaluations. 

 

Keywords: Comparison accuracy, incomplete comparisons, priorities, consistency. 

 

 

1. Introduction 

Each comparison matrix requires n(n-1)/2 comparisons. A typical problem involves many 

matrices. A common complaint about AHP/ANP is that too many comparisons are 

required. A procedure that reduces the number of required comparisons would make 

AHP/ANP more efficient and satisfying.  

 

2. Literature Review 

Concern for the large number of comparisons goes back to the early days of AHP. Harker 

(1987a, b, c) was instrumental in providing procedures for reduced comparisons. He 

developed (1) two methods for determining missing values in partially completed 

matrices, (2) a gradient method for choosing the next comparison that would provide the 

greatest information and (3) stopping rules for terminating evaluations before all 

comparisons are done. Wedley (1993) utilized Harker’s ideas to develop regression 

equations that predict the final consistency ratio if the DM proceeded to complete all 

comparisons. This information is useful as an adjunct for Harker’s stopping rules.  
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3. Hypotheses/Objectives 

In spite of the roadmap provided by Harker, very few software procedures have been 

designed to reduce the number of comparisons. It is the hypothesis of this paper that 

some comparisons are more accurate than others. With knowledge about accuracy, the 

objective is to make recommendations that improve the comparison process.  

 

4. Research Design/Methodology/Data 

In order to determine comparison accuracy, we must work with examples that have 

known true answers. Let V=(v1,v2 … vn)T be a vector of ratio values for some property of 

n objects. M=[vi/vj] will be the perfectly accurate comparison matrix. Let T=[tij] be the 

DM’s matrix of comparison estimates such that tij≈vi/vj, T≈M. From T, an AHP priority 

vector is derived, P=(p1,p2 … pn)T, with N=[pi/pj]. T-M is then used to measure 

comparison accuracy while N-M is used to measure priority accuracy. 

 

Empirical data for this study was provided by Bernasconi et al (2010). They conducted 

three estimation experiments (distances, probability, and rainfall) where the true answer 

was known to the experimenters. 

 

5. Data Analysis 

Each empirical experiment had 5 alternatives that were evaluated by 69 subjects. Since 

each T requires 10 direct comparisons the total number of comparison values for each 

experiment is 1380 (690 direct and 690 reciprocal). Analysis of average absolute and 

proportional errors revealed the following important findings: 

1. The distance experiment has the best accuracy. Closely behind is the probability 

experiment.  In comparison, the rainfall experiment has very poor accuracy. 

2. Reciprocal comparisons have lower error values because the more dominant item 

is the unit for comparison. Conversely, direct comparisons have larger error 

values because they have the less dominant item as the unit. 

3. In matrix columns with large magnitude units, absolute errors are small. Those 

columns have more reciprocal comparisons.  

4. Proportional errors adjust for differences in magnitude of the column units. 

Proportional results indicate that accuracy is better in columns with lower 

magnitude units. 

 

To reveal accuracy relationships, multiple regressions were conducted with the following 

variables: (1) true magnitude vi/vj (2) experiment type (Distance=0), (3) column 

magnitude effect (smallest unit column, P1=0) and (4) order of comparison entry. Those 

variables were used in three regressions: (1) all comparisons, (2) direct comparisons and 

(3) direct comparisons exclusive of rainfall data (Table 1). Important findings are: 

1. There is positive correlation between absolute errors and the true magnitude of an 

object. This effect disappears with proportional calculations. Particularly for 

direct comparisons, larger magnitude items exhibit lower proportional error. 

2. Positive coefficients for the probability and rainfall experiments indicate that 

they have larger errors than the distance experiment. 

3. Compared to the smallest unit column (P1=0), other columns with larger units of 

measure tend to have larger errors (i.e. coefficients are positive).  



ISAHP Article: Wedley Comparison Accuracy – Implications for Deriving Priorities and 

Consistency, 2014, Washington D.C., U.S.A 

International Symposium of 

the Analytic Hierarchy 

Process 

3 Washington, D. C. 

June 29 – July 2, 2014 

 

4. The positive coefficients for comparison order signifies that proportional errors 

are larger for later comparisons, although the effect is not significant when 

rainfall data are excluded. 

 

Table 1 Multiple Regression Results from Three Perspectives 

 

All 

Comparisons

Direct 

Comparisons

Direct without 

Rainfall

All 

Comparisons

Direct 

Comparisons

Direct without 

Rainfall

# Observations 4140 2070 1380 4140 2070 1380

Multiple R 0.470 0.477 0.213 0.480 0.746 0.450

R-Square 0.221 0.228 0.045 0.230 0.557 0.202

Standard Error 1.569 1.792 1.651 3.152 3.222 2.337

Variable

Constant -0.362 1.085 1.024 -1.568 0.344 0.997

True Comparison Magnitude 0.310 0.053 0.063 0.015 -0.212 -0.213

Probability = 1 (Distance=0) 0.087 0.115 0.146 0.284 0.428 0.550

Rainfall =1 (Distance=0) 1.504 1.074 n.a. 2.744 2.052 n.a.

P2=1 (P1=0) 0.417 0.531 0.671 0.346 0.171 0.057

P3 = 1 (P1=0) 1.289 1.272 0.825 1.997 1.661 0.322

P4 = 1 (P1=0) 0.139 0.576 0.625 0.552 1.586 1.267

P5 = 1 (P1=0) 0.716 2.299 1.725 3.121 9.683 5.910

Comparison Order 0.029 -0.042 -0.030 0.160 0.066 0.012

p<0.05 for all coefficients except underlined and italicized which are not significant (p>0.05)

ABSOLUTE ERRORS PROPORTIONAL ERRORS

Coefficients Coefficients

 
 

Besides comparison accuracy, priority vector accuracy can be analyzed from M-N. The 

priority vectors considered included the eigenvector method based upon all comparisons 

and 7 other methods based upon just 4 spanning tree comparisons (see Table 2 for a 

listing). For the distance experiment, n-1 comparisons to the lowest magnitude unit (P1) 

had statistically lower error, even better than the eigenvector method. For probability 

data, the eigenvector solution was the best, but not statistically better than the best n-1 

method (Pdiagonal).  

 

Table 2 Frequency of Vectors being Most Accurate or Tied for Most Accurate  

  

Vector Total Total

Source Distance Probability Rainfall #, % Distance Probability Rainfall #, %

P1 Lowest Unit Column 38 36 7 81 (38.8%) 36 33 7 76 (36.7%)

P2 2nd Lowest Unit Column 9 5 5 19  (9.1%) 12 3 5 20 (9.7%)

P3 3rd Lowest Unit Column 5 2 24 31 (14.8%) 6 3 23 32 (15.5%)

P4 4th Lowest Unit Column 3 2 20 25 (12.0%) 3 2 27 32 (15.5%)

P5 Largest Unit Column 5 3 8 16 (7.7%) 2 3 3 8 (3.9%)

Pdiagonal 2 12 2 16 (7.7%) 2 9 3 14 (6.8%)

Prandom 5 4 2 11 (5.3%) 6 4 4 14 (6.8%)

Peigenvector (all comparisons) 7 7 4 18  (8.6%) 7 13 3 23 (11.0%)

Mean Absolute Errors Mean Absolute Proportion Errors
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Table 2 summarizes how many times a method is most accurate or tied as most accurate. 

Notice that P1 from the lowest unit column was best most often. Of 207 comparison 

matrices, P1 was best 81 times for MAE (39%) and 76 times for MAPE (37%).  Only 7 of 

those successes came from the less reliable rainfall data.  Successes for P3 and P4 came 

almost exclusively from the rainfall data set. Interestingly, the eigenvector routine was 

only supreme about 9-11% of the time. 

 

6. Discussion and Limitations  

Unlike most studies where V is unknown, this study has the luxury of being able to 

measure the true error of comparisons and priority vectors. Proportional results that 

adjust for comparison magnitude indicate that comparisons to the lowest magnitude 

object are the most accurate. The reason for this behavioral tendency is not clear. Perhaps 

before doing comparisons, people subconsciously rank the objects in their mind or think 

of the extreme points of the range. 

 

In three other studies, (Wedley et al, 1993; Carmone et al 1997; Wedley, 2009) support 

was found for using the lowest ranked object as the unit for the first n-1 comparisons. 

However, it should be noted that the Carmone et al (1997) data were simulated. If the 

relationship to the least dominant object holds for simulated data, then it raises a question 

as to whether or not the cause is behavioral. 

 

A useful check upon whether the empirical results are behavioral would be to simulate 

the same proportional error for each matrix of this study. Perturbing M in this manner 

would reflect random inconsistency by the DM. These random values, with no behavioral 

effect, would then act as a check upon the empirical data. 

 

Knowing V and true errors also provides the opportunity to analyze the consistency ratio 

and its ability to detect the inaccurate and unreliable data. Table 3 summarizes the results.  

 

Table 3 Regression Statistics for the Eigenvector solutions and Consistency Ratios 

 

Type of

Statistic Distance Probability Rainfall Distance Probability Rainfall 

Average CR 0.067 0.148 0.080 0.067 0.148 0.080

Standard Deviation of CR 0.086 0.228 0.107 0.086 0.228 0.107

Average Error of Eigenvector 0.862 0.943 2.204 0.432 0.560 3.151

Regression CR=f(Eigenvector Errors)

    r 0.69 0.45 0.03 0.81 0.43 0.03

    R-Square 0.47 0.21 0.00 0.66 0.18 0.00

    F-Ratio 59.47 17.34 0.08 130.20 14.93 0.07

    p-Value < 0.0001 < 0.0001 0.7794 < 0.0001 0.0003 0.7903

MAE MAPE

 
 

The distance and rainfall experiments have good consistency while the probability 

experiment has modestly inflated inconsistency. From the distance and probability data, 

we can see that reasonably good accuracy occurs when the consistency ratio is less than 

0.20. But the most important finding is from the rainfall experiment. There, participants 
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were extremely inaccurate but quite consistent. This illustrates that the consistency ratio 

is not a reliable indicator of accuracy. Participants in the rainfall experiment produced 

matrices of acceptable CR, yet they were unaware that their priorities are quite 

inaccurate. This reinforces a point often overlooked in AHP studies – the person making 

the comparisons must be both knowledgeable about the property being considered and 

diligent in making good estimates. 

 

7. Conclusions 

Since comparisons to the least dominant object tend to be more accurate, we should 

identify and give preference to those judgments. Two ways are suggested to identify the 

least dominant object. One method is to roughly rank the objects before comparisons are 

undertaken. The other method is to calculate initial priorities after n-1 comparisons. 

 

Somewhere between n-1 and complete n(n-1)2 comparisons is a good place to stop. 

Exactly where is uncertain, but that decision could be left to the DM. After n-1 

comparisons, priorities and step statistics can be calculated. If step statistics appear 

stable, they could be displayed to the DM along with the priorities at that stage. If 

reasonable, the DM could accept the results and terminate comparisons. Ultimately, it is 

the DM who decides whether his/her priorities are acceptable.  This discretion avoids the 

inefficiency and cost of making unnecessary comparisons. 
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