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ABSTRACT 

Two classes of inverse problems in the process of the AHP are studied. The first class, which 

we call “inverse hierarchy problem”, is the inverse of the forward problem of obtaining the 

overall priority weight vector for the alternative set from the local priority weight data set, 

such as the weight vectors for criteria viewed from the goal and for alternatives viewed from 

each criterion. The second class, which we call “inverse eigenvector problem”, is the inverse 

of the forward problem of obtaining the eigenvector from the pairwise comparison matrix, 

where complete information of pairwise comparison data is assumed. 

For the inverse hierarchy problem, two types of the problems are mathematically formulated 

as constrained least p-th norm problems. The inverse hierarchy problem of type 1 is to 

estimate, from the given objective overall priority weight vector for the alternative set, the 

local priority weight vector for the criteria. The inverse hierarchy problem of type 2 is to 

estimate, from the given objective overall priority weight vector for the alternative set, some 

of the local priority weight vectors for the alternatives viewed from each criterion. 

For the inverse eigenvector problem, we show that, given a priority weight vector x and an 

eigenvalueλ(or Consistency Index CI=(λ-N)/(N-1)), the problem of finding an N×N matrix 

A which satisfies Ax=λx can be equivalently transformed into the problem of finding an 

N×N matrix E which satisfies E1=λ1, where eij=aij(xj/xi), x>0, and 1 is the all-1 column 

vector. For N=3, the reciprocity assumed and λ given, the error matrix E is determined 

uniquely in the sense that a quadratic equation has a unique pair of solutions. On the basis of 

this result for N=3, the inverse eigenvector problem “E1=λ1” is analyzed for cases of 

N=3m, 3m+1, and 3m+2, respectively, and the error matrix E is shown to be expressed 

explicitly with N(N-3)/2 free independent parameters. 

 

Keywords: inverse problem, eigenvector, eigenvalue, Consistency Index, quadratic equation, 

reciprocal error matrix, reciprocity 

 

 

1. Introduction 

Two classes of inverse problems in the process of the AHP are studied. The first class, which 

we call “inverse hierarchy problem”, is the inverse of the forward problem of obtaining the 

overall priority weight vector for the alternative set from the local priority weight data set, 

such as the weight vector for criteria viewed from the goal and the weight vectors for 

alternatives viewed from each criterion. The second class, which we call “inverse eigenvector 

problem”, is the inverse of the forward problem of obtaining the eigenvector from the 
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pairwise comparison matrix or the pairwise comparison data set. 

In Chapter 2, these two classes of AHP inverse problems, the inverse hierarchy problem and 

the inverse eigenvector problem, are explained. 

In Chapter 3, two types of the inverse hierarchy problems are discussed and are formulated as 

constrained least square problems.  

In Chapter 4, the inverse eigenvector problem of finding an N×N pairwise comparison matrix 

A satisfying Ax=λx with given x andλ, which is equivalent to the problem of finding an 

N×N error matrix E which satisfies E1=λ1 with givenλ, is analyzed, first for N=3, second 

for N=4, 5 and 6, and finally for cases of N=3m, 3m+1, and 3m+2, respectively. 

 

2. Two classes of AHP inverse problems 
The forward, or direct, process of AHP consists of following four steps. 

Step 1: Model the problem as a hierarchy (Decomposition).  
Step 2: Make pairwise comparisons between elements, such as between criteria viewed from 

the goal and between alternatives viewed from each criterion (Pairwise comparison). 

Step 3: Estimate the local priority weight vector, such as the weight vectors for criteria 

viewed from the goal and for alternatives viewed from each criterion, as an eigenvector of 

pairwise comparison matrix (Eigenvector). 
Step 4: Synthesize these local priority weight data along the hierarchy into the overall priority 

weight vector for the alternatives (Synthesis). 

Two classes of inverse problems are presented in the above procedure of the AHP. The first 

class, which we call “inverse hierarchy problem”, is the inverse of the forward problem of 

Step 4 (Synthesis). The second class, which we call “inverse eigenvector problem”, is the 

inverse of the forward problem of Step 3 (Eigenvector). 

 

3. Inverse hierarchy problem  

Two types of inverse hierarchy problems are mathematically formulated as constrained least 

p-th norm problems. The inverse hierarchy problem of type 1 is to estimate the local priority 

weight vector for the criteria from the given objective overall priority weight vector for the 

alternative set. The inverse hierarchy problem of type 2 is to estimate some of the local 

priority weight vectors for the alternatives viewed from each criterion from the given 

objective overall priority weight vector for the alternative set. 

3.1 Inverse hierarchy problem of type 1 

The inverse hierarchy problem of type 1 is to estimate, x={xj}, m×1 local priority weight 

vector for the criteria, from, y={yi}, n×1 given objective overall priority weight vector for the 

alternative set. Its forward problem is “y=Dx  (1)”, where D={dij} is n×m evaluation matrix 

between n alternatives and m criteria. This problem is generally formulated as the p-th norm 

distance minimization problem with normalization and non-negativity constraints. 

Objective: Z1=‖y-Dx‖p  →minimize          (2)     
Normalization constraint: Σxj=1                     (3)  

Non-negative variable: x≧0                           (4) 

Let p=2, and consider the equality-constrained minimization problem.  

Objective: Z1=(y
T
-x

T
D

T
)(y-Dx) →minimize     (5) 

Normalization constraint: Σxj=1                      (6) 

In solving the original problem (2)-(4), we take a recursive approach: first solve an equality-

constrained problem, such as (5) and (6), and if its solution does not satisfy the inequality 

constraint (4), then solve equality-constrained problems of smaller size. This procedure is 

iterated until the solution of the original problem is obtained. 
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3.2 Inverse hierarchy problem of type 2 

The inverse hierarchy problem of type 2 is to estimate b, a part of D={dij}, from the rest of D, 

x={xj} and y={yi}. For the case p=2 and b is the m-th column of D, the problem is formulated 

as follows. 

Objective: Z2=(b
T
-c

T
)(b-c) →minimize          (7) 

Normalization constraint: Σbj=1                    (8)  

Non-negative variable: b≧0                          (9) 

D＝(B,b),  y=Dx=(B,b) =Bv+bz, and c=(y-Bv)/z, where b is a variable vector and the rest are 

given. Since the objective function (7) is quadratic and spherical, if the solution of an 

equality-constrained problem, such as (7) and (8), does not satisfy the inequality-constraint 

(9), then we only have to solve one equality-constrained problem of smaller size with all 

negative bj’s being fixed at 0’s. 

 

4. Inverse eigenvector problem   
Given a priority weight vector x and an eigenvalueλ(or Consistency Index CI=(λ-N)/(N-1)), 

the problem of finding an N×N pairwise comparison matrix A which satisfies Ax=λx is 

equivalent to the problem of finding an N×N error matrix E which satisfies E1=λ1, where 

eij=aij(xj/xi), x>0,and 1 is the all-1 column vector.  

4.1 Case of N=3 

Assuming the reciprocity of E={eij}, the problem of finding E which satisfies E1=λ1 is 

expressed by a set of nonlinear equations (10), (11) and (12). 

e12+ e13=K1                    (10)       

1/e12                + e23=K2                      (11)  
1/e13+1/e23            =K3                         (12) 

Although K1=K2=K3=k=λ-1 for N=3  (13), we introduced K1,K2 and K3 to prepare for further 

analysis. Using the quadratic formula, e12 is given by (14), and consequently, e13 and e23 are 

also derived. 
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Since (13) holds for N=3, we have two patterns of error matrix, E
+
 and E－, given by (15). 
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4.2 Case of N=4 

The nonlinear equation with variables e12 ,e13 and e23 is solved by setting K1, K2 and K3 as in 

(16), and using the quadratic formula, e12 is given by (14) and consequently, e13 and e23 are 

derived. 

K1=λ-1-e14, K2 =λ-1-e24, K3=λ-1-e34      (16)        e14 =1/(λ-1-1/e24-1/e34)     (17) 

Since e14 is determined by (17) if e24 and e34 are given, when two free parameters, e24 and e34, 

are given, the error matrix E is determined uniquely in the sense that a quadratic equation has 

a unique pair of solutions. 

4.3 Case of N=5 

The nonlinear equation with variables e12 ,e13 and e23 is solved by setting K1, K2 and K3 as in 

(18), and using the quadratic formula, e12 is given by (14) and consequently, e13 and e23 are 

derived. 

K1=λ-1-e14-e15, K2 =λ-1-e24-e25, K3=λ-1-e34-e35       (18)  

e14 =1/(λ-1-1/e24-1/e34-e45)     (19)        e45 =1/(λ-1-1/e15-1/e25-1/e35)     (20) 

Since e14 is determined by (19) if e24, e34 and e45 are given and e45 is determined by (20) if e15, 

e25 and e35 are given, when five free parameters, e15, e24, e25, e34 and e35, are given, the error 
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matrix E is determined uniquely.  

4.4 Case of N=6 

We have two sets of nonlinear equations in case N=6. While one nonlinear equation with 

variables e12 ,e13 and e23 is solved by setting K1, K2 and K3 as in (21), and e12 is given by (14) 

and consequently, e13 and e23 are derived, the other nonlinear equation with variables e45 ,e46 

and e56 is solved by setting K1, K2 and K3 as in (22), and e45 is given by (14) and consequently, 

e46 and e56 are derived. 

K1=λ-1-e14-e15-e16,    K2 =λ-1-e24-e25-e26,     K3=λ-1-e34-e35-e36           (21)  

K1=λ-1-1/e14-1/e24-1/e34,    K2 =λ-1-1/e15-1/e25-1/e35     K3=λ-1-1/e16-1/e26-1/e36           (22)  

When nine free parameters, e14, e15, e16, e24, e25, e26, e34, e35 and e36, are given, the error 

matrix E is determined uniquely in the sense that a quadratic equation has a unique pair of 

solutions, or namely, we have four patterns of error matrix, E
++

, E
+－,E－+

  and E－－. 

4.5 General case of N 

Assuming the reciprocity of E, the nonlinear equation “E1=λ1” has U variables, Q equations, 

and F free independent variables, or parameters. 

 U=N(N-1)/2,    Q=N,   F=N(N-3)/2,  U=Q+F   (23) 

Here, Q=the number of dependent variables, and F = the degree of freedom. 

The regions corresponding U variables and F free parameters in the error matrix E will be 

illustrated for the cases of N=3m, 3m+1, and 3m+2, respectively. 

[Case of N=3m] The error matrix E is shown in Figure 1(a), where its upper triangular part 

excluding the diagonal elements corresponds to U variables (U=N(N-1)/2) and its shadowed 

part corresponds to F free parameters. The rest, U-F, corresponds to Q equations, or Q 

dependent variables denoted by ○.  

Given F free parameters in the shadowed part, Q(=3m) dependent variables in the diagonal 

blocks are determined uniquely in the sense that a quadratic equation has a unique pair of 

solutions, by solving m quadratic equations(three dependent variables in a diagonal block by 

solving one quadratic equation), or namely, we have 2
m
 patterns of error matrix. 

 [Case of N=3m+1] The error matrix E is shown in Figure 1(b), where its upper triangular 

part excluding the diagonal elements corresponds to U variables and its shadowed part 

corresponds to F free parameters. The rest, U-F, corresponds to Q equations, or Q dependent 

variables denoted by ○ and ●, where e1N, denoted by ●, is chosen as a dependent variable, 

following the manner e14 is chosen as a dependent variable as in (17) for case N=4. 

Given F free parameters in the shadowed part, 3m dependent variables(out of Q=3m+1 
dependent variables) in the diagonal blocks denoted by ○ are determined uniquely with 2

m
 

patterns, and the remaining one dependent variable e1N denoted by ● is determined by (24). 

e1N =1/(λ-1-1/e2N-1/e3N-1/e4N-1/e5N……-1/eN-2,N-1/eN-1,N)     (24) 

 [Case of N=3m+2] The error matrix E is shown in Figure 1(c), where its upper triangular 

part excluding the diagonal elements corresponds to U variables and its shadowed part 

corresponds to F free parameters. The rest, U-F, corresponds to Q equations, or Q dependent 

variables denoted by ○, ● and ▲, where e1,N-1, denoted by ●, is chosen as a dependent 

variable, following the manner e14 is chosen as a dependent variable as in (19) for case N=5 

and eN-1,N, denoted by ▲, is chosen as a dependent variable, following the manner e45 is 

chosen as a dependent variable as in (20) for case N=5. Given F free parameters in the 

shadowed part, 3m dependent variables(out of Q=3m+2 dependent variables) in the diagonal 

blocks denoted by ○ are determined uniquely with 2
m
 patterns, and remaining one dependent 

variable e1,N-1 denoted by ● is determined by (25) and remaining the other dependent variable 

eN-1,N denoted by ▲ is determined by (26). 

e1,N-1=1/(λ-1-1/e2,N-1-1/e3,N-1-1/e4,N-1……-1/eN-2,N-1-eN-1,N)      (25) 

eN-1,N =1/(λ-1-1/e1N-1/e2N-1/e3N-1/e4N……-1/eN-3,N-1/eN-2,N)     (26) 
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(a) N=3m                                      (b) N=3m+1                                (c) N=3m+2 

Figure 1: Error matrixes for cases of N=3m, 3m+1, and 3m+2 

 

5. Conclusions 
Two classes of AHP inverse problems, inverse hierarchy problem and inverse eigenvector 

problem, are proposed, formulated, and analyzed.  

In solving the two types of inverse hierarchy problems, we employed a recursive approach 

where, first, negative weights are allowed to minimize the error between the goal and the 

achieved by relaxing the non-negativity constraints, and then, the solution is adjusted by 

fixing the negative weights at 0’s and solving equality-constrained problems of smaller size. 

This approach is supposed to simulate our way of thinking: we keep things of positive value 

and discard things of negative value. This recursive approach is mathematically called 

“Visible Region Approach(Shinohara, 1994),” because the optimum of a constrained 

minimization problem is assured to lie on the surface of the feasible region which is visible 

from an optimum of the associated unconstrained minimization problem, if the objective 

function is convex. Some of the application examples are Japanese capital relocation and 

handicapped match of horse race (Takai & Shinohara, 2013, Takai, 2014), where with 

handicapped match of horse race an additional burden (=handicap) is imposed on each horse 

so that winning chance of every horse is equalized as much as possible to make it exciting. 

The inverse eigenvector problem Ax=λx, or E1=λ1, is to solve a set of nonlinear equations, 

resulting in m quadratic equations for the cases of N=3m, 3m+1, and 3m+2, and, if F free 

independent parameters are given (F=N(N-3)/2), the error matrix E is determined uniquely 

with 2
m
 patterns. The inverse eigenvector problem is expected to find applications in the field 

of opinion manipulation, such as controlling aij’s to achieve objective priority weight and/or 

objective CI.  
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