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Abstract: This article addresses the problem of measuring closeness in weighted environments 
(decision-making environments). The relevance of this article is related with having a dependable 
cardinal measure of distance in weighted environments. Weighted environments is a non isotropic 
structure where the different directions (axes) may have different importance (weight) thus, there 
exist privilege directions. In this kind of structure would be very important to have a cardinal reliable 
index able to say how close or compatible is the set of measures of one individual with respect to the 
group or to anyone other.  Common examples of this structure is the interaction between actors in a 
decision making process (system values interaction), matching profiles, pattern recognition, and any 
situation where a process of measurement with qualitative variables is involved. 
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1. Introduction 

This article addresses the problem of measuring closeness in weighted environments (decision-
making environments), using the concept of compatibility of priority vectors and value systems. For 
our purposes, compatibility is defined as the proximity or closeness between vectors within a 
weighted space. We will show a proposition for a compatibility index able to measure closeness in a 
weighted environment, thus, able to assess: pattern recognition; medical diagnosis support measuring 
the degree of closeness between disease-diagnosis profiles, Buyer-Seller matching profiles; 
measuring the degree of closeness between house buyer and seller projects or employment degree of 
matching; measuring the degree of closeness between a person’s profile with the desired position 
profile; in curricula network design, Conflict Resolution; measuring closeness of two different value 
systems (ways of thinking) by identify and measuring the discrepancies, and in general measuring 
the degree of compatibility between any priority vectors in cardinal measure bases (order topology). 

 
2.- Literature Review 

In metric topology, the particular function of distance D(a,b) is used to assess the closeness of 
two points a, b as a real positive function that keeps 3 basic properties: 

1.- D(a,b) > 0 and D(a,b) = 0 iif a=b (definition of zero distance) 
2.- D(a,b) = D(b,a)   (symmetry) 
3.- D(a,b) + D(b,c) ≥ D(a,c)  (triangular inequality)  
The general function of distance used to calculate the separation between two points is: 

D(a,b)= Lim (Σi(ai-bi)n)1/n  (i=1,...,n; n= dimension of the space). 
     n  k 

When applying different values of k, different Norms of distance appear: 
For k = 1,  then: D(a,b)= ΣiAbs(ai-bi). Norm1, absolute Norm or path Norm; this Norm measure the 

distance from a to b within a 1D line, “walking” over the path, in one line-dimension. 
For k = 2,  then: D(a,b)= [(Σi(ai-bi)2)]1/2. Norm2 or Euclidean Norm, this Norm measure the 

distance from a to b, within a 2D plane (X-Y plane) getting the shortest path (the 
straight line).  

For k = +∞, then: D(a,b)= Maxi (abs (ai-bi)). Norm ∞ or Norm Max; this Norm measure the distance 
from a to b within a ∞D hyperplane, getting the shortest path (the maximum coordinate) 
from all the possible paths. 

3.- Hypotheses/Objectives 
In order topology, measurement deals with dominance between preferences (intensity of 

preference), for instance: D(a,b)=3, means that dominance or intensity of preference of “a” over “b” 
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is equal to 3, or that, a is 3 times more preferred than b. When talking about preferences a relative 
absolute ratio scale is applied. Relative; because priority is a number created as a proportion of a 
total (percent or relative to the total) and has no needs for an origin or predefined zero in the scale. 
Absolute; because it has no dimension since it is a relationship between two numbers of the same 
scale leaving the final number with no unit. Ratio; because it is built in a proportional type of scale 
(6kg/3kg=2).  

So, making a general analogy between the two topologies, one might say that: “Metric Topology 
is to Distance as Order Topology is to Intensity”. 
 

An equivalent concept of distance is presented in order to make a parallel between the three 
properties of distance of metric topology. This is applied in the order topology domain, considering a 
compatibility function (Eq.1) similar to distance function, but over vectors instead of real numbers. 
Consideration: A, B, C are priority vectors of positive coordinates and Σiai= Σibi = Σici =1, and 
G(A,B) is the compatibility function expressed as: 
 

G(A,B) = ½Σi(ai+bi)Mini(ai,bi)/Maxi(ai,bi)             (Eq.1) 
          

1.-  0 ≤ G(A,B) ≤ 1  (Non negative real number) 
The compatibility function G, returns a non negative real number that lays in the 0 - 1 range. With 
G(A,B)=0, if and only if A and B are perpendicular vectors (A┴B), and represent the definition of 
total incompatibility between priority vectors A, B. (AºB=0), and G(A,B)=1, if and only if A and B 
are parallel vectors, (A=B for normalized vectors), and represent the definition of total compatibility 
between priority vectors A and B. (AºB=1) 
2.-  G(A,B) = G(B,A)  (Symmetry) 
Symmetry condition, the compatibility measured from A to B is equal to the compatibility measured 
from B to A. 
Easy to proof, just interchanging A for B and B for A in the compatibility function G. 
3.-  G(A,B) + G(B,C) ≥ G(A,C)  (Triangular inequality) 
It is easy to prove that if A, B and C are compatible priority vectors (i.e. 0.9 ≤ Gi ≤ 1), then property 3 
is always satisfied. But, this property is also satisfied for the more relaxed (and interesting) condition 
where only two of the three vectors are compatible. For example, if A is compatible with B (i.e. 
G(A,B)≥0.9) and if A is compatible with C (i.e. G(B,C)≥0.9, or some other combination of A, B and 
C), then condition 3 is also satisfied. This more relaxed condition allows compatible and non-
compatible vectors to be combined while property 3 is still satisfied.  
 
This situation can be geometrically viewed in the next figure: 

 
 

 
 

Figure A: Maximum circle of compatibility for position A, related to B and C 

Figure A is showing the compatibility neighborhood for A, in relation with B and C, with its 
minimum compatibility value of 0.9 represented by the radius of the circle. (In the center the 
compatibility reaches its maximum value of 1.0). Thus, G(A,B)=G(A,C)=0.9 is representing the 
minimum compatibility point, or the maximum distance for positions B and C to still be compatible 
with position A, of course, G(B,C)<0.9 they represents a non-compatible position for points B and C. 
Notice that property 3 G(A,B) + G(B,C) ≥ G(A,C) is still valid  indeed, any combination that one can 
be made will keep the inequality satisfied, since if C gets closer to A (increasing the right side of the 
equation), then G(B,C) will also grow. The extreme case when C is over A, (G(A,C)=1.0) then 
G(B,A)+G(B,C)=0.9+0.9=1.8>1.0 keeping the inequality satisfied. 
 
 We may also define incompatibility function as the arithmetic complement of the 
compatibility:  Incompatibility = 1 – Compatibility. Thus: Incompatibility is equivalent to 1 - G. By 

C 

A 
B 0.9 0.9 



the way, the incompatibility concept is more close to the idea of distance, since the greater the 
distance the greater the incompatibility.  
 

Two simple examples of this parallel between D(x,y) and G(X,Y) are given. But first, to 
make D and G functions comparable, D must be transformed into relative terms as a percent value 
since the priority vectors are normalized vectors for G function. Thus, the maximum possible value 
for D1 (Norm1) is 2 and for D2 (Norm2) is , while performing the ratios with respect to the 
maximum possible value and obtaining D in relative terms as percent of the maximum value.  

For the first example, two different and very different vectors A and B with coordinate: {0.3, 
0.7} with {0.7, 0.3} and {0.1, 0.9} with {0.9, 0.1} are considered. 
Considering also Incompatibility= 1– Compatibility: 1 – G(A,B). Then: 
Compatibility between A and B is shown by G(A,B)  (Real positive value laying in 0-1 range.) 
Incompatibility between A and B is shown by 1– G(A,B) (Real positive value laying in 0-1 range 
also). Table 1a shows the results of applying D1, D2 and (1-G) functions. 
 

A,B 
Coordinates 

D1(a.b)  
Distance A-B in 

Norm1 (normalized) 

D2(a,b)  
Distance A-B in 

Norm2 (normalized) 

Incompatibility=  
1 - G(A,B) 

A={0.3, 0.7} 
B={0.7, 0.3} 0.8/2= 0.4 (40%) 0.4√2/√2= 40% 1-(0.3/0.7)= 57% 

A={0.1, 0.9} 
B={0.9, 0.1} 1.6/2= 0.8 (80%) 0.8√2/√2= 80% 1-(0.1/0.9)= 89% 

Table 1a: Evaluating distance and incompatibility for non-similar set of coordinates 
 
Figure B shows in 2D Cartesian axes how distant (incompatible) is A from B in both cases. Notice 
that for the case represented in brown (for D=80% and G=89%), vectors A and B are (geometrically) 
almost in a perpendicular position (A relative to B). 

 
Figure B: Two examples for distance and compatibility functions for far and very far A and B  

 
Next, using the same process, we compare for similar and very similar A, B vectors with 

coordinates: {0.3, 0.7} compared with {0.4, 0.6} and {0.10, 0.90} compared with {0.11, 0.89}.Table 
1b shows the results of applying D1, D2 and 1-G (Incompatibility = 1- Compatibility). 
 

A,B Coordinates D1(%) D2(%) Incompatibility= 1-G(%) 
A={0.30, 0.70} 0.2/2= 0.1 (10%) 0.1√2/√2= 10% 1-0.820= 18% 

1-G=57% 



B={0.40, 0.60} 
A={0.10, 0.90} 
B={0.11, 0.89} 0.02/2= 0.01 (1%) 0.01√2/√2= 1% 1-0.981= 1.9% 

Table 1b: Calculating distance and incompatibility for similar set of coordinates 
 

The trend of the results for D and G functions is the same in both cases, when increasing the 
distance or making vectors more perpendicular and when decreasing the distance or making the 
vectors more parallel. This is an interesting parallel to these concepts and their trends, considering 
that different concepts (distance and incompatibility in different ratio scales) are being used.  

 
4.- Research Design/Methodology 

One way to calculate compatibility in a general form is by using the inner or scalar vector 
product, defined as: AºB = |A||B|Cosα. This expression of dot product is preferable to the Cartesian 
version, since it highlights the relevance of the projection concept represented by Cosα and also 
because when working with normalized vectors the expression AºB become equal to Cosα, which 
shows that the projection part of the dot product is the relevant part. 
 
Definitions and Conditions 
Assuming: 
A- Two normalized vectors are close (compatible), when the angle (α) formed by both vectors on the 
hiperplane is near 0º or Cosα is near to one. From a geometric point of view, they will be 
represented by parallel or nearly parallel vectors. In this case they will be defined as compatible 
vectors.  
B- Two normalized vectors are not close (not compatible) when the angle (α) formed by both vectors 
on the hiperplane is near 90º or Cosα is near to zero. From a geometric point of view, they will be 
represented by perpendicular or nearly perpendicular vectors. In this case they will be defined as 
non-compatible vectors.  

 
Graphically: 
 
 
 
 
 
 
 
 

 

Figure E: Geometric interpretation of vector compatibility in terms of its projection 

Figure E shows the geometric interpretation of vector compatibility. Therefore, there is an 
operative way to measure compatibility in terms of vector projection. This interpretation of dot 
product will be very useful for the purposes of compatibility measurement of two priority vectors in 
the domain of order topology.  

Since the space is weighted, it is also necessary to weight each projection (each Cosαi) and to 
take into account the changes of the angle (projection) and weight coordinate by coordinate 
(coordinate i may have a different projection and weight of coordinate i+1). Thus, the final formula 
to assess a general compatibility index of two consistent vectors A, B from point to point throughout 
the both profiles is: 

 
G(A,B) = ½Σi(ai+bi)Mini(ai,bi)/Maxi(ai,bi)              
With:  Σai=Σbi=1 

Angle =0º  Total projection  Total Compatibility  

Angle=90º  No projection  Total Incompatibility 



 
G(A,B) = General compatibility index of DM1 with respect of DM2. 
 

This can be shown graphically in Figure F. 
 
 

.  
Figure F: Representation of the cosine projection changing point to point in terms of the profiles 

The G function is a transformation function that takes positive real numbers from the range 
[0, 1], coming from normalized vectors A, B and returns a positive real number on the same range:  
ai, bi X [0, 1]    G(A, B)   R+ X [0, 1] 
 
This transformation has two particularly good properties: 
1. It is bounded (presenting no singularities or divergence). 
2. The outcome is very easily interpreted as a percentage of compatibility, representing the 0= 0%, or 
total incompatibility and 1= 100%, or total compatibility.  
It is also possible to define a threshold for compatibility index at 90%. Thus, when two vectors have 
an index of compatibility equal or greater than 90%, they should be considered compatible vectors.  
Since, Incompatibility= 1 - Compatibility, then the threshold for tolerable incompatibility is 10%. 
 
Next, a simple application example for 2D vectors A, B is presented. 
The first case is for A=B. 
A= {0.5; 0.5}; B= {0.5; 0.5}, then:   
G(A,B)= ½ ((0.5+0.5)(1/1) + (0.5+0.5)(1/1)) = 1  
Being 100% compatible or 1-1 = 0% incompatible, this result is expected because A and B is the 
same vector. 
The second case is for two very different vectors. 
A= {0.10; 0.90}; B= {0.90; 0.10}, then: 
Min{a1; b1}= Min{0.1; 0.9}= 0.1; Max{a1; b1}= Max{0.1; 0.9}= 0.9, and (Min/Max)1= 0.111  
The same for coordinate 2: 
(Min/Max)2= 0.111, and G(A,B)= ½((0.1+0.9)0.111+(0.9+0.1)0.111)=0.111. (11.1% of 
compatibility or 88.9% >>10% of incompatibility). This is also an expected outcome since 
geometrically they are almost perpendicular vectors (vector A has almost no projection over B). 
 
5.- Limitations  

It should be noted that when using other compatibility index formulas, for instance, the 
classic dot product and dividing the result by n (like taking the average instead of weighting to 
evaluate the incompatibility), the result of the operation is: (0.1/0.9+0.9/0.1)/2= 4.55 (or 355% of 
incompatibility or deviation from n). Doing the same in a matrix environment, that is forming the 
Hadamard product and dividing by n2 instead of n to assess the deviation, the result is 83,012/22= 
20.75 (20.75-1=19.75 or 1975% of incompatibility or deviation from n2. Presenting both situation a 
singularity problem (not bounded function). 

Another formula to evaluate incompatibility is the Hilbert formula, which expression is: 
Log(Maxi(a,b)/Mini(a,b))= 1.909, (191% of incompatibility). These last three formulae present a 
divergence process (singularities). As vector A deviates from vector B, (being more and more 
incompatible), they become close to the perpendicular vectors. The G function becomes the only 
formula capable of correctly assessing the compatibility without falling in a singularity (divergence), 
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or remaining immobilized, as a standard distance calculation does when the absolute difference 
between the coordinates is kept constant. In fact, a complete study1 of the behaviour of different 
compatibility indices is presented in Table 32. The study was made initially for a 2D space (vectors 
of two coordinates), since the idea was to perform a sensitive analysis and observe the patterns of 
behavior of different compatibility indices in two special situations:  

A. Parallel trend situation: when two vectors are near each other or close enough to be parallel 
vectors. 
B. Perpendicular trend situation: when two vectors are separate or close enough to be perpendicular 
vectors.  

Table2 summarizes the compatibilities indices that exist, adding the option of Euclidian 
norm (the classic distance calculation based on Norm2), normalized by its maximum possible value 
of  to present the results in percentage format. 

 
 

 

 

 

Table2: Definition of different formulas for compatibility assessment 

Six formulae in a 2D vector for 7 cases for two different trends (parallel trend and perpendicular 
trend) were tested. The results are shown in Table 3. 

 
Table 3: Sensitive analysis for different compatibility indices 

                                                           
1 Claudio Garuti, “When close really means close?” Paper of Compatibility. Presented in the ISAHP9 Symposium and 
Proceeding. Viña del Mar-Chile, 2007. 
2 The different compatibility indexes analyzed were taken from the literature and from linear algebra definitions. 

 Hilbert formula (Hilbert´s index):  C(A, B) = Log {Maxi(ai/bi)/Mini(ai/bi)} 
 Inner vector product inverted (IVP):  C(A, B) = {A}°{B} /n = (Σi ai x 1/bi ) /n 
 Weighted inner vector product (WIVP):  C(A, B) = {A} {B} {W} = Σi (ai x 1/bi  x wi) 
 Hadamard product (Saaty´s índex):  C(A, B) = [A]°[B]t /n2  = [ΣιΣj aij x 1/bij] /n2 
 GCI normalized (G index):   C(A, B) = 1/2Σ i(ai+bi)(Min(ai,bi)/Max(ai,bi) 
 Euclidian formula (normalized):   C(A, B) = SQRT(1/2Σi(ai–bi)

2) 



6.- Conclusions 
There are two global conclusions of this study: 
First, that we need some kind of distance measurement (proximity or compatibility) in weighted 
environments (order topology domain), in order to mathematically define if two profiles are really 
close or not, this will make possible a matching analysis process, considering that those profiles may 
represent: system values, a pattern recognition process, benchmarking, or even a membership 
analysis (closeness analysis). 
Second, this analysis shows that the only compatibility index that performs correctly for every case 
is the G index, keeping the outcome always in the 0-100% range (like the normalized Euclidean 
formula), and this is an important condition, since any value out of the 0-100% range would be 
difficult to interpret (and the beginning of a possible divergence). It is also important to note the G 
and Euclidean outcomes in Table 3.They are close , but G is much more accurate or sensitive to 
changes since they are not based on absolute differences (∆xi) as distance is, but on relative absolute 
ratios scale (the Min/Max weighted projection). Indeed, the Euclidean distance calculation shows no 
differences in the distance of parallel trend from case 1 to 6 (Euclidean based index cannot detect the 
difference in the compatibility value) because the absolute difference of the coordinates remains the 
same. Therefore, with the Euclidian based index one may reach the wrong conclusion that no 
difference exists for vector compatibility from cases 1 to 6 (the first case study is as incompatible as 
2, 3, 4, 5 or 6, which is not an expected result). This unexpected behaviour occurs because the 
Euclidean norm is based on differences, and because it’s not concerned about the weights of the 
coordinates and the projections between vectors. It is important to remember that the numbers inside 
the priority vector represent preferences, hence, in terms of proximity, it is better to be close to a big 
preference (big coordinate) than to the small ones. Other tests made in greater spaces (3D to 10D) 
show the same trend. Moreover, the bigger the space dimension, the greater the likelihood of finding 
singularity points for the others formulae in both trends parallel and perpendicular.  
 
It is interesting to note that function G depends on two different dimensional factors, on one side the 
intensity of preference (related with the weight), and on the other side the angle of projection 
between the vectors (profiles). This means that G is a function of the intensity (I) of preference and 
the angle (α) between the priority vectors, that is: (G= f (I,α)).  Clearly, the G function is not the 
simple dot product (as normally defined), but something more complex and rich. It is also important 
to note that both data (intensity and angle) are implicit in the coordinates of the priority vectors (the 
profiles) and have to be correctly extracted if one wants to produce a good and reliable index to 
measuring the degree of compatibility or closeness between profiles in weighted environments. 
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