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ABSTRACT

An AHP matrix of the quotients of the pair comparison priorities can be transformed
to a  matrix  of  shares  of the  preferences.  The transformed matrix can be used in
Markov stochastic modeling via the Chapman-Kolmogorov system of equations for
the discrete states. It yields a general solution and the steady-state probabilities. The
priority  vector  can  be  interpreted  as  the  eventual  probabilities  to  belong  to  the
discrete  states  corresponded  to  the  compared  items.  The  results  of  stochastic
modeling correspond to robust estimations of priority vectors.
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1. Introduction
The  work  describes  relations  between  AHP  and  Markov  stochastic  modeling  via
Chapman-Kolmogorov equations for discrete states. The suggested approach is based on
transformation of a Saaty matrix of the priority quotients to a matrix of the preference
shares.  This  share  matrix  is  used  in  constructing  Chapman-Kolmogorov  system  of
differential equations and solving it for the dynamic and eventually reached steady-state
probabilities  which  define  preferences  among  the  compared  items.  The  solution
corresponds to the eigenproblem for obtaining robust priority vectors.

2. Literature Review
The Analytic Hierarchy and Analytic Network Processes (Saaty, 1980, 1996) are ones of
the most widely known and applied methods of multiple criteria decision making. We
consider relations of the AHP with some other techniques of pairwise comparison data,
including  the  Thurstone  scaling,  Bradley-Terry-Luce,  and  Markov  stochastic  model
presented as Chapman-Kolmogorov equations for discrete states, and some results are
presented in (Lipovetsky & Conklin, 2002, 2003; Lipovetsky, 2005).
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3. Hypotheses/Objectives
In this study we consider a possibility to use a data of Saaty pairwise comparison matrix
in the stochastic model of transition of preferences among the states corresponding to the
compared  alternatives.  Finding  the  steady-state  preferences  opens  a  possibility  of
interpretation of the AHP priorities as the probabilities of choices among the items under
considerations.

4. Research Design/Methodology
A theoretical Saaty matrix of pair comparisons for n items defines each ij-th element as a
ratio of unknown priorities wi and wj:
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Multiplying matrix (1) by the vector )',....,,( 21 nwwww =  we get identical relation

                                   nwWw = ,                                                          (2)

Elicited from a judge, an empirical pair comparison matrix of priority ratios is 
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It is a Saaty matrix with transposed-reciprocal elements

                                   1−= jiij aa .                                                         (4)

Similarly to (2), priorities in the AHP are estimated by the eigenproblem for a matrix (3):

                                 λαα =A ,                                                           (5)

where  the  maximum  eigenvalue  corresponds  to  the  term  n in  (2),  and  the  principal
eigenvector α  estimates the vector of priorities w.

Let us introduce a theoretical matrix of shares
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Each element uij is defined as i-th priority in the sum of i-th and j-th theoretical priorities:
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To estimate priority vector by the matrix (6) we write identical equalities: 
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Then using notation (7) we present the system (8) as:     
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In the matrix form the system (9) is:

                      ( ) nwwUediagU =+ )( ,                                                         (10) 
where  U is the matrix (6),  e denotes a uniform vector of  n-th order, and  diag(Ue) is a
diagonal matrix of totals in each row of matrix  U. Relations (8)-(10) for the theoretical
matrix of shares (6) are derived similarly to the problem (2) for the matrix (1). 

In classical AHP, pair ratios wi/wj (1) are estimated by elicited values aij (3). Using aij  in
(7) we obtain empirical estimates bij of the pairs’ shares:
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ij
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(11) 
This transformation of the elements of a matrix  A (3) yields a pairwise share matrix  B
with elements (11). The elements of such a matrix (11) are positive, less than one, and
have a property of symmetry: 

                               1=+ jiij bb .                                             (12)       
It  means  that  the  transposed  elements  bij and  bji are  equidistant  from  the  diagonal
elements  bii=0.5,  so  jiiiiiij bbbb −=− .  Elements  of a Saaty matrix  (3) with large or
small values are transformed in (11) to the values closer to one or zero, respectively.

In the AHP,  for empirical  Saaty matrix  A (3) we have eigenproblem (5) in place of
theoretical relations (2). By the same pattern, using empirical matrix  B (11) in place of
theoretical matrix U, we represent the system (10) as an eigenproblem

                      ( ) λαα =+ )( eBdiagB ,                                          (13)
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where α  as a vector of priority. Multiplying the matrix in (13) by the uniform vector and
using (12) shows that this matrix has a property of the total in its each column equals n:

              ( ) enBeeBeeBdiagB =+′=′+ )( ,                                            (14)
where prime denotes transposition. Dividing both sides of equations (13) by the term n,
we obtain eigenproblem of a positive matrix with totals in the columns equal to one,
which is  an eigenproblem of the transposed stochastic matrix.  Such a matrix  has the
maximum  eigenvalue  equals  one.  Due  to  the  Perron-Frobenius  theory  for  a  positive
matrix, its main eigenvector always exists, is a unique one, and has all positive elements.
Thus, the maximum eigenvalue in (13) equals n, and a solution for the main eigenvector
exists and is unique, that ensures in the desired properties of the priority vector.

5. Data/Model Analysis
Eigenproblem (13) has a matrix a transposed stochastic kind that relates it to matrices
known in Markov modeling. Consider a discrete state and continuous time Markov model
presented  via  Chapman-Kolmogorov  differential  equations  describing  a  stochastic
process of transitions among the states. This model is based on properties of a finite set of
the  elements  (alternatives  compared  within  a  criterion)  that  are  tied  by  the  constant
transition probabilities of each alternative’s prevalence over the others. The prevalence of
one item over another one in the AHP corresponds to probability of the former item to be
preferred  over  the  latter  one  in  the  eliciting  process.  The  Chapman-Kolmogorov
equations  express  change  in  probability  to  be  found  in  any  of  n states  as  a  linear
combination of these probabilities with the coefficients of the transition intensities. 

Taking a pair of the elements  bij and  bji of the share matrix (11) we notice that each
element can be interpreted in terms of probability to prefer one of the items over another
one, due to the meaning of the theoretical shares (7). The preference of an  i-th item over
a j-th item corresponds to transition between them with intensity bij. The share matrix B
can be presented as a connected oriented graph with  n nodes of states/alternatives and
two edges between each of pair of nodes, one going to state i from state j corresponds to
transition intensity bij and the other going from state i to state j corresponds to transition
intensity bji. An example of such a network is shown in Figure 1.

Figure 1. AHP Network of the Transition Shares
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The system of Chapman-Kolmogorov equations can be presented as following:
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where pi denotes probability to belong to an i-th state, and coefficients bij  are the values
(11). Items with positive signs at the right-hand side (15) define influx to each state from
all the others, and those with negative signs define departure from a state to all the other
states. If canceling items 0.5pi are added to both positive and negative inputs in each i-th
equation (15), this system can be represented in the matrix form:

                   ( ) peBdiagBp )( ′−= ,                                 (16)

where p is a vector of the probabilities pi for all the states, p  denotes the vector of their 
derivatives, B is the same matrix with elements (11), B’ is its transposition, and e is the 
identity vector. Using property (14) that the sum of totals in i-th column and row of the 
matrix B equals n, we can rewrite (16) as:

                     ( ) pnIeBdiagBp −+= )( ,                                                  (17)

where I denotes the identity matrix of n-th order. 

Considering solution of the Chapman-Kolmogorov equations (17) for the steady-state
probabilities when the process is stabilized, we put the derivatives in the left-hand side
equal zero, and (17) reduces to:

                       ( ) pnpeBdiagB =+ )( .                                                           (18)

But  (18)  is  nothing else  but  the  same  eigenproblem (13)  with the  largest  eigenvalue
n=λ  and a unique positive main eigenvector, as it was discussed in relation to equality

(14). So the results of the AHP priority evaluation (13) can be interpreted from the point
of view of the stochastic process steady-state solution (18) as follows: the AHP priority
vector  corresponds  to  the  eventual  probabilities  to  belong  to  the  discrete  states,  or
alternatives, and these probabilities define the preferences among the compared items.

6. Limitations 
The described approach should be further proved by numerical modeling, and we are
going to perform it and compare the results for classical and transformed AHP matrices
and priority vectors.

7. Conclusions
Transformation of the pairwise ratio AHP matrices to the pairwise share matrices, and
solving the corresponding eigenproblem is considered. This approach can be obtained in
Chapman-Kolmogorov  modeling  of  transitions  among  the  discrete  states  of  the
alternatives.  Coincidence  of  these  results  for  AHP  priority  evaluation  and  of  the
stochastic steady-state solution suggests a useful interpretation: the AHP priorities have a
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meaning of the eventual probabilities to belong to the discrete states of the compared
items. The results of priority evaluation in terms of the choice probabilities can be used in
theoretical  modeling  and  practical  applications  for  various  multiple  criteria  decision
making problems.
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