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Summary: This paper is concerned with the problem of deriving priority vectors from pairwise 
comparison judgements, in the framework of the Analytic Hierarchy Process. With the exception of the 
traditional Eigenvalue method, all other prioritisation methods are based on minimisation of an objective 
function. However, a single objective function cannot encompass and satisfy all requirements about the 
quality of solutions. The multiple criteria character of the requirements necessitates a multiple objective 
approach to prioritisation, rather than optimisation of a single objective function. The paper proposes a 
new multi-criteria prioritisation approach, minimising the Euclidean norm and the number of rank 
violations, which measure the most important properties of the solutions. The numerical results show that 
the proposed two-objective method outperforms the known prioritisation methods, with respect to 
accuracy and rank preservation requirements.  
 
 
1. Introduction 
 
The assessment of weights of criteria and scores of alternatives is one of the most important tasks in the 
multicriteria decision-making. In the Analytical Hierarchy Process (AHP), proposed by Saaty [18], the 
values of weights and scores are assessed indirectly from comparison judgements. The elicitation process 
for both weights and scores is the same, so they are often called priorities.  
 
The pairwise comparison process in the AHP assumes that the decision-maker can compare any two 
elements at a given hierarchical level and to provide a numerical value of the ratio of their importance. 
Comparing any two elements iE  and jE , the decision-maker assigns a value ija , which represents a 

judgement concerning the relative importance of preference of the decision element iE  over jE . If iE  is 

preferred to jE  then ija >1, otherwise 10 ≤< ija . 
 
A full set of judgements for a level with n elements requires n(n-1)/2 comparisons. In order to derive a 
priority vector T

nwwww ),...,,( 21=  from a given set of judgements, Saaty [18] constructs a positive 

reciprocal matrix }{ ijaA = nxnℜ∈ . The Eigenvector prioritisation method (EV) [18], [19] is based on 
some properties of the pairwise comparison matrices. Using the Perron-Frobenius theorem, Saaty proves 
that the principal right eigenvector of A can be used as a priority vector. 
 
With the exception of the traditional EV method, all other methods for deriving priorities in the AHP are 
based on some optimisation approach. They introduce an objective function, which measures the degree 
of approximation or the distance between an “ideal” solution and the actual one. Thus the problem of 
priority derivation is formulated as an optimisation task of minimising the objective function, subject to 
normalisation and some additional constraints.  
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The Direct Least Squares (DLS) method [5], [11], [17] is based on the assumption that the errors between 
the initial judgements ija  and solution ratios ji ww /  should be minimised, so it uses the Euclidean 
distance metric as an objective function. The objective function, used in the Weighted Least Squares 

(WLS) method [3], [5] is also a 2L  norm, similar to that of the DLS. The WLS transforms the solution to 
the problem to a system of linear equations that can easily be solved. It is shown in [3] that the WLS, 
unlike the DLS, provides a unique solution. 
 
The Logarithmic Least Squares (LLS) method of Crawford and Williams [7] makes use of the 
multiplicative properties of the pairwise comparison matrices and applies an optimisation procedure, 
minimising the logarithm of the squared Euclidean distance. This method gives an explicit solution, 
which is rather simple and convenient from a computational point of view. 
 
Some authors formulate the prioritisation task as a goal programming (GP) problem by introducing 
additional deviation variables [4], [8]. The objective function to be minimised is expressed as a sum of 
these deviation variables. For example, the logarithmic goal programming method proposed by Bryson 
[4] minimises a linear logarithmic function of deviation variables subject to a number of linear 
constraints.  
 
The Fuzzy Preference Programming (FPP) method, proposed by the author of this paper [14] introduces 
fuzzy sets that measure the degree of approximation of the fuzzy equalities 0~=− jiji waw . The 
prioritisation problem is formulated as a fuzzy linear programming model that maximises the overall 
degree of satisfaction with a given priority vector.  
 
All prioritisation methods mentioned above try to find a solution which best satisfy the initial judgements, 
but the notion of ‘best’ is defined in different ways by their objective functions. Obviously, the properties 
of the prioritisation methods and their solutions are closely related to those of their metrics. So, the 
natural question is which metric has to be preferred by the decision-maker for solving a specific 
prioritisation problem.  
 
There is an ongoing discussion in the literature about the advantages and limitations of the various 
prioritisation methods. The researchers recognise the multi-criteria nature of the evaluation problem and 
explore a number of properties, applying various evaluation criteria. The most important properties of the 
prioritisation methods, identified in these comparison studies are the accuracy of solutions, rank 
preservation and invariance to transposition.  
 
Usually, the accuracy of prioritisation methods is measured by the Euclidean distance, which is the metric 
of the DLS method. Many researchers have applied the Euclidean distance as a criterion, comparing 
different prioritisation methods [5], [7], [8], [10], [15], [19], [22], [23]. Some authors evaluate additional 
properties of these methods, as rank preservation and invariance to transposition, using additional criteria 
[2], [3], [9], [10], [15], [19], [11], [23]. 
 
The main conclusion from most comparison studies is that there is no prioritisation method that is 
superior to the others with respect to all evaluation criteria. All methods have their advantages and 
drawbacks and the choice of the prioritisation method should be dictated by the objective of the analysis. 
 
Despite the multi-criteria nature of the requirements, regarding the properties of their solutions, all 
extremal prioritisation methods optimise a single objective function. However, as the comparison studies 
show, a single objective function cannot encompass and satisfy all requirements. The multiple 
requirements about the quality of solutions require development of multi-criteria prioritisation methods, 
which could provide better results, than the existing single objective optimisation methods.  
 
The main objective of this paper is to propose a new multi-criteria optimisation approach to prioritisation. 
A two-objective prioritisation (TOP) problem is formulated as an optimisation task for minimisation of 
the Euclidian norm and the number of rank violations. A method and algorithm for solving the TOP 
problem is proposed, and conditions for obtaining a Pareto optimal set of solutions are derived. Finally, a 
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numerical example is given, where the solutions to the TOP problem are compared to those, obtained by 
some other prioritisation methods.  
 
 
2. Multiple-objective prioritisation problem  
 
2.1. Optimisation criteria  
 
Let { }ijaS ij >=  be a set of pairwise comparison judgements. The feasible set Q is defined as the set of 

all priority vectors T
nwww ),...,( 1= , which satisfy the normalisation and non-negativity constraints: 
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The accuracy of the each priority vector Qw ∈ , approximately satisfying the comparison judgements can 
be measured by the Total deviation criterion 
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This criterion is equivalent to the squared Euclidean distance for the upper triangular part of Saaty’s 
reciprocal matrix A.  
 
The rank preservation properties of the solutions can be measured by the Minimum violations criterion 
[1], [10]: 
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The Minimum violation criterion (3) can be represented in the following compact form: 
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where the signum function is defined as: 
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2.2. Statement of the optimisation problem 
 
The two-objective prioritisation (TOP) problem is to find a feasible priority vector that ‘simultaneously’ 
minimises the Total deviation and the Number of violations: 

 
minimise )(wT  and )(wV        (5) 
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subject to Qw ∈ , 

where 1: RRT n →  and 1: RRV n →  are real-valued objective functions, defined by (2) and (4) 
correspondingly.  
 
Each feasible vector Qw ∈  determines a unique value of the objective function vector ))(),(( wVwTy = . 
Therefore, the feasible set Q  in the space of decision variables can be transformed into a payoff set Y in 
the two-dimensional objective space:  
 
 { }QwwVyandwTythatsuchyyyyY ∈==ℜ∈== ),()(),( 21

2
21 .  

 
The payoff set Y represents a feasible region of the admissible values of )(wT  and )(wV , and can be 
considered as the image of the feasible set Q in the objective space. The payoff set Y of the TOP problem 
consists in parallel line segments, as the function )(wV  takes non-negative discrete values in some range, 
and the function )(wT  is bounded.  
 
2.3. Solutions to the TOP problem 
 
Definition 1. A priority vector Qw ∈*  is said to be an optimal (superior) solution to the TOP problem 
(5) if it attains the minimum values of both criteria simultaneously.  
 
Mathematically, w* is an optimal solution to the problem if and only if )(*)( wTwT ≤  and )(*)( wVwV ≤  
for all Qw ∈ . Optimal solutions to the TOP problem exist only if the set of pairwise comparison 
judgements S is totally or strongly transitive. If the judgements are weakly transitive or non-transitive, the 
TOP, as most multi-objective problems, has no optimal solution.  
 
Let T* and V* be global minima of the single objective problems: 
 
 { }QwwTT ∈= )(min* ,        (6) 

 { }QwwVV ∈= )(min* .        (7) 
 
Then *)*,(* VTy =  is called an ideal point (or utopia point) of the problem (5). If *y  is feasible, 

Yy ∈* , the solution *)(),(* 1 yVTw −=  simultaneously minimises both objective functions.  
 
If the set of pairwise comparison judgements S is weakly transitive on non-transitive, the objectives (2) 
and (4) are conflicting and cannot be optimised simultaneously, so an optimal solution does not exist. 
Some compromise solutions, however, could be found.  
 
Definition 2. A priority vector Qwo ∈  is said to be a Pareto optimal (or strongly non-dominated) 

solution if there is no Qw ∈  such that )()( 0wTwT ≤  and )()( 0wVwV ≤ , with a strict inequality for at 
least one of these conditions. 
 
The above definition implies that if ow  is a Pareto optimal solution to the TOP problem (5), the value of 

)( 0wT  cannot be decreased without causing a simultaneous increase in the Number of violations, and 
wise versa.  
 
Definition 3. A priority vector Qwo ∈  is said to be a weak Pareto optimal (or weakly non-dominated) 

solution if there is no Qw ∈  such that )()( 0wTwT <  and )()( 0wVwV < . 
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It is obvious that Pareto optimality implies weak Pareto optimality, i.e. if ow  is strongly non-dominated, 
then it is also weakly non-dominated. If ow  is a weak Pareto optimal solution, then it is not possible to 
decrease simultaneously the values of both objective functions )( 0wT  and )( 0wV  by choosing another 
feasible solution. 
 
Generally, the Pareto optimal solutions to the TOP problem are not unique, especially in weak transitive 
and non-transitive cases. We will call the set P of all Pareto optimal solutions a Pareto optimal set, 

{ }solutionoptimalParetoaiswwP 00= . 

 
The objective vectors, corresponding to the Pareto optimal solutions ))(),(( 00 wVwTy =  form the Pareto 

optimal front { }PwwVwTyC ∈== ))(),(( . It is easy to be shown that C is on the boundary of the payoff 

set Y. Indeed, for any point ),( VTy =  in the interior of Y, reduction of T could be achieved by moving 
along the line V=const., towards the point T=0, until the boundary of Y is reached.  
 
Since Y is non-connected set, C is a discrete curve in 2ℜ , consisting of isolated points. It is also called a 
trade-off function, since it shows how much the value of T must change to stay in C when the value of V 
changes.  
 
Necessary conditions for a point to be in the Pareto optimal front C are developed for convex and 
continuous objective functions [20], [21], but because of the non-continuous nature of )(wV  they cannot 
be applied directly. But we can find solutions to the TOP problem by applying an appropriate solution 
method.  
 
 
3. Solution to the TOP problem 
 
3.1. Solution methods 
 
There are a number of MCDM methods that can be applied for finding Pareto optimal solutions to the 
two-objective prioritisation problem (5). For example, the classical weighted sum method [21] requires 
aggregation of the objectives into a single, parameterised objective function. Then the TOP problem can 
be formulated as  
 
 Minimise )()( 21 wVkwTkJ +=        (8) 
 subject to Qw ∈ , 
 
where 01 >k  and 02 >k  are weighting coefficients, which determine the relative importance of the 
objectives.  
 
The main disadvantage of this method, however, is that it cannot generate all Pareto optimal solutions, if 
the payoff set Y  is non-convex. The limitations of the Weighted sum method could be overcome by the ε-
constraint approach [13], [21], which requires specification of the maximum allowable level ε  of 
Number of violations )(wV , and solves the following problem: 
 
 Minimise )(wT          (9) 
 subject to ε≤)(wV ,  Qw ∈ . 
 
The Proper Equality Constraints (PEC) method, proposed by Lin [12] is similar to the ε-constraint 
approach, but it uses only equality constraints. Lin proves that this method can also find the whole set of 
Pareto optimal solutions.  
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Since the objective function (4) can take only a finite number of discrete values, equality constraints will 
be used for solving the TOP problem.  
 
3.2. Constrained Least Squares optimisation problem 
 
Let αQ  be a subset of the feasible area QQ ⊂α , such that { }αα =∈= )(wVQwQ , where α is a real 

number, k5.0=α , k=0, 1, 2, …K. We can denote by Α  the set of all α in ℜ  for which the 
corresponding subset αQ  is nonempty. Since α can take only discrete values, the set Α  is also a discrete 
set in ℜ . In order to determine the set Α , we have to find the range of α in ℜ such that the 
corresponding subsets αQ  are nonempty.  
 
As αQ  is nonempty and closed, and )(wT  is bounded from below, for any α in Α  there exists an α-
optimal solution )(ˆ αw to the following Constrained Least Squares (CLS) problem: 
 
 minimise )(wT          (10) 
 subject to 
 Qw ∈ , α=)(wV . 
 
The minimum of the objective function { }ααψ QwwT ∈= )(min)(  is given by ))(ˆ()( ααψ wT= . Since 

the function )(αψ  is defined on Α , which is a discrete set, this function is also discontinuous.  
 
Each pair ))(,( αψα , Α∈α , represents a minimising vector in the payoff set Y, attainable by the α-

optimal solution )(ˆ αw . The set of all pairs { }Α∈= ααψα ))(,(L  forms a discrete front in Y. Generally 

not all α-optimal solutions are Pareto optimal, so L is not a Pareto optimal front.  
 
Theorem 1. For a given scalar Α∈0α , the solution to (10) )(ˆ 00 αww =  is Pareto optimal, if 

)()( 0αψαψ >  for any α in Α  such that 0αα < .  
 
Proof: Assume that )(ˆ 00 αww =  is not Pareto optimal solution. Then, for some 0αα ≠  there should exist 
a Pareto optimal vector αQw∈ . From the Pareto optimality conditions it follows that 

00 )()( αα =≤= wVwV , but since 0αα ≠ , a strict equality 0αα <  must hold.  
 
As w  is Pareto optimal, it should be also an α-optimal solution such that { }αQwwT ∈)(min = )(αψ . 

Then from the Pareto optimality conditions we should have )()()()( 00 αψαψ =≤= wTwT , so the 0α -

optimal solution satisfies the condition )()( 0αψαψ ≤ . Therefore, if 0w  is a Pareto optimal solution, then 
the conditions of Theorem 1 hold.  ¦  
 
Using this theorem we can determine the entire set of all Pareto optimal solutions from the set L of all α-
optimal solutions to the CLS problem (10) by discarding the vectors, which do not satisfy the conditions 
of this theorem. In order to provide a simple test for Pareto optimality, we can use the left-increasing 
property of the function )(αψ .  
 
Definition 4. Let 0α  is a point in Α . Then the function )(αψ  is left-increasing on Α  if )()( oαψαψ >  

for any α such that 0αα < .  
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Corollary 1. For a given point 0α  in Α , the CLS solution )(ˆ 00 αww =  is Pareto optimal, if the function 

)(αψ  is left-increasing from 0α . 
 
Corollary 2. For a given point 0α  in Α , the CLS solution )(ˆ 00 αww =  is Pareto optimal, if the ratio  

 
αα

αψαψ
αψ

−
−

=∇ 0

0 )()(
)(         (11) 

is negative for any minimising vector ))(,( αψα  in the objective space, such that 0αα < .  
 
Unlike the conditions for optimality of continuous functions, which require differentiation and might 
appear to be a formidable task, the above condition (11) provides a simple practical test for checking the 
solutions of the CLS problem for Pareto optimality, which does not need evaluating the function )(αψ  
over Α . It follows that we can obtain the set of all Pareto optimal solutions by determining the set Α , 
solving a number of CLS problems for each α  in Α  and then discarding all solutions, which do not 
satisfy (11).  
 
However, some elements α  in Α  that cannot yield Pareto optimality solutions might be discarded 
without solving the CLS problem. If )(ˆ 00 αww =  is a Pareto optimal vector, satisfying the conditions of 

Theorem 1, then 0α  is a proper scalar. The set of all proper scalars can be denoted by Β , Α⊆Β . Then 
{ }Β∈= αα )(ŵP  represents the set of all Pareto optimal solutions, obtained from the set L of all α-

optimal solutions to the CLS problem.  
 
Firstly, we have to determine the boundary values minα  and maxα  of the set of proper scalars Β . Consider 
the single-objective optimisation problem (6). Its solution *w  corresponds to the absolute minimum of 
the Total deviation *)(* wTT = , which cannot be improved by any other feasible vector Qw ∈ . The 
value of the second criterion, corresponding to this optimal solution gives the upper limit of Β , 

maxα = *)(wV . Evidently, if there are feasible priority vectors Qw ∈  such that α=)(wV > maxα , they 
cannot be Pareto optimal, since *)( TwT >  and therefore there is no need to take them into consideration. 

On the other hand, if (6) has multiple solutions *
iw , i=1,2,…,k, such that )ˆ(* iwTT = , but resulting in 

different )ˆ( iwV , then maxα = ))ˆ(min( iwV , since for all α > maxα  the optimal vectors *),( Tα  do not 
satisfy (11), so the solutions are not Pareto optimal.  
 
The lower bound minα  of Β  can be obtained by solving the single optimisation problem (7). Generally, 
this problem has infinite number of solutions w , which lie on the line min)( α=wV , but only the 
minimum value of the objective function *V  is of interest. If the judgements are totally or strongly 
transitive, then minα = maxα =0. In this case we have to solve only one CLS problem, although some of 
subsets Q  could be non-empty. 
 
3.3. Computational algorithm 
 
The computational procedure for solving the two-objective prioritisation problem can be summarised in 
the following algorithm. 
 
Step 1: Solve the problem (6) and find maxα . If maxα =0, then set ŵ = *w  and go to Step (6). Otherwise 
go to Step (2). 
Step 2: Solve the problem (7) and find minα . If minα = maxα , then set ŵ = *w  and go to Step (6). 
Otherwise go to Step (3). 
Step 3: Form a set Β

)
= ),...,1,2/1,( maxminminmin αααα ++ . 
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Step 4: For each Β∈
)

α  solve the CLS problem (10) and determine )(ˆ αw  and ))(ˆ()( ααψ wT= . 

Step 5: Determine the set of the proper scalars Β⊆Β
)

 and the entire set of Pareto optimal solutions 
{ }Β∈= αα )(ŵP , using condition (11).  

Step 6: Stop. 
 
If the prioritisation problem is inconsistent and there are many Pareto optimal solutions, the decision-
maker should finally select a priority vector from the set { }Β∈= αα )(ŵP , best satisfying his/her 
preferences with respect to the accuracy and rank ordering.  
 
 
4. Example 
 
Let us consider a prioritisation problem with 5 unknown priorities. The comparison judgements provided 
by an expert are: 
 

12a =5, 13a =1/3, 14a =7, 15a =2/3; 

23a =2, 24a =1/2, 25a =4; 

34a =1/2, 4/135 =a  

45a =1/3. 
 
From the first two steps of the algorithm we can find the ideal point *)*,(* VTy = , shown in Fig. 1, and 
the boundary values minα =2, maxα =6. The set of all candidates for being proper scalars is 

)6,5.5...,,3,5.2,2(ˆ =Β . 
 
Solving the CLS problem (10) for each Β∈

)
α  and applying the optimality condition (11) we can 

determine the set of all Pareto optimal solutions. In this example all scalars in Β
)

 are proper, thus we have 
nine Pareto optimal solutions, given in Table 1. 
 
 

Table 1. TOP solutions to the problem 
 

1w  2w  3w  4w  5w  T V 

0.283 0.124 0.123 0.186 0.284 55.261 2.0 
0.281 0.128 0.127 0.184 0.280 55.244 2.5 
0.390 0.129 0.128 0.130 0.224 41.716 3.0 
0.392 0.128 0.128 0.129 0.224 41.437 3.5 
0.358 0.103 0.102 0.060 0.376 31.373 4.0 
0.358 0.103 0.104 0.060 0.376 31.072 4.5 
0.361 0.110 0.110 0.059 0.361 30.942 5.0 
0.361 0.074 0.144 0.059 0.361 26.622 5.5 
0.566 0.117 0.224 0.093 0.421 26.479 6.0 

 
 
Fig. 1 shows graphically the Pareto optimal front C as a number of points, represented by diamond 
symbols. From the entire set of non-dominated solutions the decision maker can select one solution, 
which best satisfies his preferences. For example, an appropriate compromise between accuracy and 
number of violations can be achieved by the solutions, corresponding to α =3 and α =4.  
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Fig. 1. Pareto optimal solutions 
 
Solutions to this example by some other prioritisation methods are given in Table 2. They are also 
compared graphically in the objective space to the solutions, obtained by the proposed multiple-criteria 
optimisation method. As it can be observed from Fig. 1, the TOP solutions dominate strongly solutions, 
determined by all other prioritisation methods. 
 
 

Table 2. Results from different prioritisation methods 
 

Method 
1w  2w  3w  4w  5w  T V 

DLS 0.566 0.117 0.224 0.093 0.421 26.479 6 
FPP 0.401 0.145 0.234 0.103 0.117 41.079 6 
WLS 0.315 0.087 0.113 0.053 0.059 45.986 6 
EV 0.298 0.195 0.163 0.122 0.222 48.099 5 
LLS 0.287 0.182 0.136 0.137 0.257 51.416 4 
GP 0.670 0.134 0.067 0.096 0.033 477.504 5 

 
 
5. Conclusions 
 
A new multiple objective prioritisation method is proposed in this paper, which minimises the Euclidean 
norm and the Number of rank violations, thus ensuring satisfactory accuracy and good rank preservation 
properties of the final set of Pareto optimal solutions. Comparisons to other prioritisation methods clearly 
show the advantages of this new approach to prioritisation in the AHP. 
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