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Pairwise comparisons

Pairwise comparison value 𝑎𝑖𝑗 is approximate of the ratio of  weights  
between 𝑖 -th alternative and 𝑗 -th alternative:

𝑎𝑖𝑗 ≈ 𝑤𝑖/𝑤𝑗

They are reciprocal symmetric.
𝑎𝑖𝑗 = 1/𝑎𝑗𝑖 , 𝑎𝑖𝑖 = 1

They are arranged into the pairwise comparison matrix 𝐴 = 𝑎𝑖𝑗 .
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Inferring weights

Weights of alternatives are inferred from the values 𝑎𝑖𝑗.

• In the completely consistent cases, 𝑎𝑖𝑗 = 𝑤𝑖/𝑤𝑗.

The eigenvector method and the geometric mean method are widely 
used.
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Multi-objective optimization

• The value 𝑎𝑖𝑗 is the approximate ratio of the weights.

𝑎𝑖𝑗 ≈ 𝑤𝑖/𝑤𝑗

• Seeking weights can be regarded to as multi-objective optimization, 
such that, to find weights 𝒘 = 𝑤1, … , 𝑤𝑛 , where

min
𝒘>0

𝑤𝑖

𝑤𝑗
− 𝑎𝑖𝑗

𝑖≠𝑗
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Former discussions of the optimization.

Choo and Wedley, 2004.

Blanquero, Carrizowa, Conde, 2006.



Pareto optimality (Efficiency)

• In the multi-objective optimization, Pareto optimality can be defined 
as follows.

The weight 𝒘 > 0 is Pareto optimal if there is no weights ෥𝒘 > 0 which satisfies
෥𝑤𝑖

෥𝑤𝑗
− 𝑎𝑖𝑗 ≤

𝑤𝑖

𝑤𝑗
− 𝑎𝑖𝑗

for all 𝑖 ≠ 𝑗, and at least one inequality holds strictly.

• Blanquero, Carrizosa and Conde, 2006.

• The geometric mean method is Pareto optimal.

• The eigenvector method may be not Pareto optimal.
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An example: the principal eigenvector is not 
Pareto optimal.   (Bozoki and Fulop, 2016)
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𝐴 = (𝑎𝑖𝑗) =

1 1 4 9
1 1 7 5
1/4 1/7 1 4
1/9 1/5 1/4 1

𝒘 =

0.4045179
0.4361729
0.1102954
0.0490138

→ 𝑤𝑖/𝑤𝑗 =

1 0.9274255 3.6675849 8.2531384
1.0782538 1 3.9545872 8.8989776
0.2726590 0.2528709 1 2.2502924
0.1211660 0.1123725 0.4443867 1

෥𝒘 =

0.4361729
0.4361729
0.1102954
0.0490138

→ ෦𝑤𝑖/෦𝑤𝑗 =

1 1 3.9545872 8.8989776
1 1 3.9545872 8.8989776

0.2528709 0.2528709 1 2.2502924
0.1123725 0.1123725 0.4443867 1

෦𝑤𝑖/෦𝑤𝑗 is closer to 𝑎𝑖𝑗 than 𝑤𝑖/𝑤𝑗 .

The principal eigen vector



Objective of this study

• To represent Pareto optimality of weights on directed graphs.

• Pareto optimality of weights is equivalent to strong connectivity of its 
associated graph (Balanquero, Carrizosa, and Conde, 2006).

• We give another proof based on elementary graph theory.

• To provide an algorithm inferring Pareto optimal weights.

• To examine how often principal eigenvectors of pairwise comparison 
matrices are not Pareto optimal.

• To consider the structure of Pareto optimal weights.
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A directed graph associated weights

𝐺 𝒘 ≡ (𝑁, 𝐸 𝒘 ), where 

𝑁 = 1,… , 𝑛 is the set of nodes corresponding to alternatives.

𝐸(𝒘) is the set of directed arcs, where

𝐸 𝒘 = 𝑖, 𝑗 |
𝑤𝑖

𝑤𝑗
− 𝑎𝑖𝑗 ≥ 0

𝑖 𝑗

𝑤𝑖

𝑤𝑗
− 𝑎𝑖𝑗 > 0

𝑗𝑖

𝑤𝑖

𝑤𝑗
− 𝑎𝑖𝑗 = 0
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By the definition,

either
𝑖 𝑗

𝑤𝑖

𝑤𝑗
− 𝑎𝑖𝑗 < 0

or or



Pareto optimality and strong connectivity

The weights 𝒘 is Pareto optimal

The graph 𝐺 = (𝑁, 𝐸 𝒘 ) is strongly connected

Strongly connected means that there is a path from 𝑖 to 𝑗 for all node pair (𝑖, 𝑗).

The theorem had shown by Blanquero and Carrizosa, 2006.

We give another proof based on elementary graph theory.
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A proof:   Pareto optimal ⟹ Strongly connected
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1 3

2

1 3

2

If there is no path to node 3,

(not strongly connected)

Reducing weight 𝑤3 can

reduces 𝑤3 − 𝑎31𝑤1 and 𝑤3 − 𝑎32𝑤2



A proof:   Strongly connected ⟹ Pareto optimal

If the graph is strongly connected, there is a directed cycle 

1 → 2 → ⋯ → (𝑘 − 1) → 𝑘 → 1.

On the cycle, 
𝑤𝑖

𝑤𝑖+1
− 𝑎𝑖,𝑖+1 > 0 holds.
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1

32

1

32

1

32

Improve

(increase 

weight)
Adjust

(increase 

weight)

increase

𝑤3 − 𝑎31𝑤1

(fixed weight)



An example
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𝒘 =

0.4045179
0.4361729
0.1102954
0.0490138

→

𝑤𝑖/𝑤𝑗 − 𝑎𝑖𝑗 =

0 −0.0725745 −0.3324151 −0.7468616
0 −3.0454128 3.8989776

0 −1.7497076
0

෥𝒘 =

0.4361729
0.4361729
0.1102954
0.0490138

→

෦𝑤𝑖/෦𝑤𝑗 − 𝑎𝑖𝑗 =

0 𝟎 −0.0454128 −0.1010224
0 −3.0454128 3.8989776

0 −1.7497076
0

1

2 3

4

1

2 3

4

The principal eigen vector

𝐴 = (𝑎𝑖𝑗) =

1 1 4 9
1 1 7 5
1/4 1/7 1 4
1/9 1/5 1/4 1



An algorithm to infer weights 1
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1 3

2

1 3

2

There is no path to node 3.

(not strongly connected)

Reducing weight 𝑤3 until an arc 

changes its direction.

Strongly connected



An algorithm to infer weights 2

Each column of pairwise comparison matrix 𝐴 is Pareto optimal weights.

𝐴 =

𝟏 𝑎12 𝑎13 𝑎14
𝒂𝟐𝟏 1 𝑎23 𝑎24
𝒂𝟑𝟏 𝑎32 1 𝑎34
𝒂𝟒𝟏 𝑎42 𝑎43 1

𝒂𝟏𝒊

𝒂𝟏𝒋
− 𝑎𝑖𝑗 =

0 𝟎 𝟎 𝟎

0
𝑎12

𝑎13
− 𝑎23

𝑎12

𝑎14
− 𝑎24

0
𝑎13

𝑎14
− 𝑎34

0
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1

2 3

4

Strongly connected



The geometric mean is always Pareto optimal

It can be proven by making arc (𝑖, 𝑗) when 
ln𝑤𝑖 − ln𝑤𝑗 − ln 𝑎𝑖𝑗 ≥ 0.

Geometric mean 𝒘 is the solution of 

෍

𝑖,𝑗

ln𝑤𝑖 − ln𝑤𝑗 − ln 𝑎𝑖𝑗
2
= 0

෍

𝑖≠𝑘

ln𝑤𝑖 − ln𝑤𝑘 − ln 𝑎𝑖𝑘 = ෍

𝑗≠𝑘

ln𝑤𝑘 − ln𝑤𝑗 − ln 𝑎𝑘𝑗 , for all 𝑘

𝑗
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𝒌𝑖 𝒌

𝒌 is not isolated.



Progresses since submitting abstract

To examine how often the principal eigenvector is not 
Pareto optimal.

To visualize regions of Pareto optimal weights.

To show nonconvexity of Pareto optimal weights.
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How often is the principal eigenvector not Pareto optimal?

Experiment

• For all 4×4 possible 531441 pairwise comparison matrices whose 

elements are 
1

9
,
1

7
,
1

5
,
1

3
, 1, 3, 5, 7, 9 , we checked Pareto optimality of 

the principal eigenvector.

Result

• 75216 (14.15 %) of 531441 eigenvectors are not Pareto optimal.

• 432 (  2.31%) of 18681 eigenvectors of matrices whose C.I. < 0.1 are 
not Pareto optimal.
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A typical example

𝐴 =

1 1 3 9
1 1 5 5
Τ1 3 Τ1 5 1 5
Τ1 9 Τ1 5 Τ1 5 1

, C.I.= 0.075,    𝒘 =

0.3947
0.4159

0.1412

0.0481

𝑤𝑖/𝑤𝑗 − 𝑎𝑖𝑗 =

0 −0.0510 −0.2047 −0.7942
0 −2.0545 3.6466

0 −2.0644
0
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1

2 3

4

The principal eigenvector 



Visualize the regions of the set of Pareto optimal weight

A ternary diagram for cases of 𝑛 = 3. (Mizuno and Taji, 2016)

In cases of 𝑛 = 3,

• If 𝒘 is in the inner triangle, 

then 𝒘 is Pareto optimal.

• The principal eigenvector 

is Pareto optimal.

• All weights in the inner 

triangle are Pareto optimal.
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(1,0,0)𝑡 (0,1,0)𝑡

(0,0,1)𝑡

1

𝑎23

1

𝑎31

1 𝑎12

𝒘

1 2

3



For cases of 𝑛 = 4
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All possible weights are 

represented in tetrahedron.

Each value 𝑎𝑖𝑗 is a hyper plane 

which slices the tetrahedron.

The region of the set of Pareto 

optimal weights is not any 

longer convex.

1

2

3

4

(1,0,0,0)𝑡

(0,1,0,0)𝑡

(0,0,1,0)𝑡

(0,0,0,1)𝑡

𝑎31

1

𝑎23
1

𝑎411

𝑎24

1
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The plane represents 

𝑤1: 𝑤4 = 0.404: 0.049.

Pareto optimal Pareto optimal

The principal 

eigenvector

An example

1
1
1/4
1/9

1
1
1/7
1/5

4
7
1
1/4

9
5
4
1

1

2 3

4 1

2 3

4



The optimization is nonconvex.

• In case of 𝑁 = 3, Pareto optimal weights construct a convex area.

• In case of 𝑁 ≥ 4, it is not convex.
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𝒄 𝑿 + 𝟏 − 𝒄 𝒀 = 𝒁

27

49
×

1

27

10
5
2
10

+ 1 −
27

49
×

1

22

5
10
2
5

=
1

49

15
15
4
15

Efficient Efficient Inefficient

1

2 3

4 1

2 3

4 1

2 3

4

1 1/3
3 1

3 1
3 1/3

1/3 1/3
1 3

1 1/3
3 1

23

𝑋

𝑌

𝑍

The plane represents 

𝑤1: 𝑤4 = 1: 1.



Conclusion and Future works

• We provided a proof of the theorem based on elementary graph theory: 
Pareto optimal weights has directed graphs strongly connected.

• We provide algorithms to infer Pareto optimal weights based on the 
proof.

• We investigated Pareto optimality of the eigenvector method.

• We visualized the set of Pareto optimal weights.

• The set of Pareto optimal weights are not convex.
• It consists of convex regions corresponding to strongly connected graphs.

• Which convex area the geometric mean is in?

• How choose weights from the large regions.

24


