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Abstract. This paper provides an approach to solve the faculty-course-time slot assignment problem.
Two interactive steps are defined based on multi objective mathematical programming models with
special emphasis on participant preferences. First, the course-time slot assignment problem is solved
followed by the assignment of faculty to courses. An Analytic Network Process model is used to weight
the different objectives of the problem. A real case application is included by comparing the outcome
with the current solution.
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1. Introduction

The school timetabling problem can be defined as a scheduling of a certain number of meetings,
attended by certain group of students and a teacher (or teachers) over a period of time, in conformity
with the availability of resources (e.g. rooms, teaching aids etc.) and fulfilling certain additional
requirements.

This research focuses on faculty-course-time slot (FCT) assignment problem. The FCT problem is a
special case of the more general school timetabling problem which in turn is a special case of the
problem of matching people, places, time slots, and facilities that is the general timetabling problem.

There is great deal of research done on educational timetabling problem. Al-Yakoob and Sherali
(2006) develop a mixed-integer programming approach to a class timetabling problem. MirHassani
(2006) considers a computational approach to enhancing course timetabling with integer
programming. Ozdemir and Gasimov (2003) solve multiobjective 0-1 faculty course assignment
problem.

Large amounts of data, a diversity of teaching methods and ever increasing requirements in curricula
makes this kind of scheduling hard. The problem may vary from one country to another or even from
school to school in the same country. One more requirement is the 0-1 discreteness of the variables
that multiplies the complexity of how to go about solving the assignment problem. Usually the
approach has been to find any acceptable solution instead of the optimum one. No method is yet
available to handle the problem in all its complexity.

Heuristic searches have had a reasonable amount of success. Santiago et all. (2005) proposed a two-
phase heuristic evolutionary algorithm for personalizing course timetables and applied the algorithm
to a Spanish University. Carrasco and Rato (2001) use Genetic Algorithm for class-teacher
timetabling problem. Ueda et all. (2001) consider time slot-room assignments in a university by
using genetic algorithms. Head and Shaban (2007) deal with the simultaneous course student
timetabling by using a heuristic approach. Arntzen (2005) used the tabu search method for a
university timetabling problem.
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One of the important considerations in educational timetabling problems is the participant preference,
taken into account by some researchers. Harwood and Lawless (1975) used goal programming to
examine the conflicting goals in the faculty course assignment problem. Bloomfield and McSharry
(1979) considered the faculty preferences in a two-stage heuristic approach. Schniederjans and Kim
(1987) described an application of a zero-one goal programming approach to allocate teaching staff
to specific courses based on departmental needs and the personal preferences of departmental faculty.
Badri (1996) proposed a two stage optimization model to maximize faculty-course preferences in
assigning faculty members to courses and then maximize faculty time preferences in allocating
courses to time blocks.

The study described here involves assignment of courses to time slots and faculties to the courses
with particular emphasis on preference. We extend a previously developed two-phased approach
(Kara, Ozdemir, 1997) to its multiobjective case and applied to solve FCT problem.

2. A Two Phased Approach on the Solution of Multiobjective FCT Problem -an Application

Among all dimensions considered, the size of educational timetabling problem makes it the hardest to
solve. This study focuses on three of the main concepts of the problem: a faculty, course and time
slots. A two step approach proposed for solving to solve such a problem. The first assigns courses to
time slots by considering hard constraints of the problem. The objective function is to maximize an
evaluation function which reflects the pedagogical appropriateness of the course-time slot
assignments. In the second step, the instructors are assigned to the courses by providing the course-
time slot assignments. By doing that, their preferences related to the time slots of the scheduled
courses, are indirectly included in the course assignments. In addition, administrative tendencies on
faculty-course assignments and weekly upper course limits are considered as objectives. This
multiobjective structure is solved by using a weighted sum scalarization method. An Analytic
Network Process model is used to weight the objectives. In the next section, we explain the details of
the two step process. Solution of a real case is given to illustrate both steps by comparing the outcome
with the assignment being currently made.

2.1 Course-time slot assignment
The mathematical model of the course-time slot assignment problem is constructed as follows:
Two consecutive lecture hours are considered as a time slot. Model parameters are as follows:

I ={i: i=1,2,....m} courses I: number of teaching time slots in a week
T={: j=1,2,....1} time slots ni: weighting for time slot t
m: number of courses f: number of teaching time slots in a day
w;: weight of course i with respect to its Z,: set of available teaching time slots on day p
difficulty to understand d: number of teaching days in a week
ci: weight of course i with respect to its e: number of classes
number of students I: number of different courses for class s

hi: number of weekly time slots of course i E: daily upper limit (in time slots) for class s

Decision variables
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Constraints
Each course must be assigned to at most one time slot in a day
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Two courses of the same class can not be assigned to the same time slot.
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Each course must be assigned to the required number of time slots in a week.

Daily load of each class has an upper limit.

The objective function consists several of different considerations
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The model is used to solve the particular case of an educational institution that has 54 instructors and 49
different courses. We define each specific group of students as a class that has to take a predefined set of
courses. Different classes may a course in common in their curricula. The courses are grouped into 13
groups. There is a set of instructor for each course group to teach the courses only in that group. All
groups are mutually exclusive so an instructor can not teach a course from another group. The study is
based on one of these course groups, Art and Social Science. There are 8 courses as TDE3, TDE4, EDI,
ED2, TD2, ED, TET2 and EDMET. For this group, there are also 8 instructors who teach these courses.
As we explained above, the same course (for instance TDE3) may necessarily be assigned to different
classes (for instance to 4G and 4L). So, 43 course-class pairs are needed an instructor assignment. Table 1

shows these pairs with a code.

Z App = Ty W

Tkl TRy

F

'1:'.-

Table 1
Course-class pairs with the codes
Course -class | The | Course-class | The | Course-class | The
pair code pair code pair code
4G TDE3 01 4F EDI1 16 9D ED 31
41, TDE3 02 4G EDI 17 9E ED 32
4D TDE3 03 4D EDI 18 9F ED 33
6A TDE3 04 4K EDI 19 9G ED 34
4E TDE4 05 4H ED2 20 9H ED 35
4F TDE4 06 6D ED2 21 91 ED 36
4H TDE4 07 | 4AM EDMET | 22 9K ED 37
4K TDE4 08 4M TD2 23 9L ED 38
4B TDE4 09 6B TET2 24 9M ED 39
4M TDE4 10 6E TET2 25 9N ED 40
4A TDE4 11 6D TET2 26 90 ED 41
4C TDE4 12 6C TET2 27 9P ED 42
4N TDE4 13 9A ED 28 9R ED 43
41 TDE4 14 9B ED 29
6A TDE4 15 9C ED 30

Courses differ in their level of difficulty. They are categorized as easy to understand, reasonable and as
difficult and assigned the weights as 1,2 and 3, respectively. The course weights are indicated in Table 2.
During lecturing, the level of understanding of the students changes according to the day and also the




time of day. It usually reaches a maximum point before noon and declines in the afternoon. It again
reaches a maximum point in the late afternoon. From this perspective, the days of the week also have
different weights. Usually there is a lower performance in the beginning and the last days of the week,
and it fits a normal distribution as it has a maximum point in the middle of the week (Anagiin, 1990). In
the light of the above, the days and the time slots that are under consideration are weighed as in Table 3.

Table 2 Table 3
Course weights Day and time slot weights
Course difficulty @ Courses in this group Day weight | Time slot  weight
difficult 3 TDE3, TDE4, EDI1, ED2 Monday 0.5 1,2 2
reasonable 2 TD2,ED Tuesday 0.7 3,4 4
easy to understand 1 TET2, EDMET Wednesday 1 5,6 3
Thursday 0.7 7,8 1
Friday 0.5
Table 4
Block numbers corresponding to day- time slot pairs
Day = Monday Tuesday Wednesday Thursday Friday
Time slot[]
Block Numbers
1-2 1 5 9 13 17
3-4 2 6 10 14 18
5-6 3 7 11 15 19
7-8 4 8 12 16 20

Each block is numbered as given in Table 4. By using Table 3, a weight for each block is calculated. Due
to space limitation, we only explain the weight for in first block corresponds Monday 1-2, as an example:

The weight for Monday* time slot (1-2) weight = 0,5%2 = 1

The mathematical model of the course-time slot assignment problem for the given set of data is solved by
using Lindo 6.0 software. The value of the objective function is calculated to be 910.3 for the current
assignment. On the other hand, it is equal to 1237.4 for the proposed schedule in our model. To keep the
paper within reasonable length, some parameter sets, the current and proposed assignments are not given
here, in detail.

2.2 Faculty-course assignment

The model involves assigning instructors to courses. The instructors are grouped as tenured and new
faculty. This introduces different upper limits on their weekly loads. We indicate course-class pairs with
course for the rest of the paper. Model parameters are as follows:

I ={i: i=1,2,....n} courses

J={j: i=1,2,....m} instructors

h; : number of hours required to teach ith course

u;j: upper limits of the jth instructor’s weekly load

t;.: preference level of the ith course by the jth instructor (¢;; = 1,2,3,4,5 and 6, if the instructor likes to
give the course less and less in increasing order of the value, 100 indicates that the course is undesirable
for the instructor to teach)

a;j  administrative preference level for the assignment of ith course to the jth instructor

(@jj the same with the definition of #;; ).

Decision variables
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Constraints
Each course must be assigned to only one instructor.
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An instructor can not teach more than his upper weekly limits in hours.
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Objective functions:

Minimize, for each of the instructors, the average preference level, Lj, per hour thought
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Minimize the administrations total preference level on instructor-course assignments.
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Minimize the total deviation from the upper load- limits of the instructors.
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The last objective is defined as a goal constraint. Later, we show how the total deviations from the goal
are minimized in the objective function. Before discussing the multi objective structure of the problem,
we say a few more words about the first objective function.
In previous studies, people considered faculty preferences via objective function, and in most, either sum
of the preferences or sum of the deviations from the preferences are optimized by using decision models.
However, with respect to the overall performance of the system, these approaches may have some
drawbacks as demonstrated by the following example.
Assume we are given three feasible solutions for the faculty-course assignment problem where, as in
Table 5, 1 means the most desirable course and 6 the least desirable. The instructor preference levels
(tj’s) for y;;> 0, the sum of the preferences and the differences among the instructor preference levels are
given in the following table.

Table 5
Preference levels obtained for three feasible solutions

Vi

Solution 1 Solution 2 Solution 3
Instructor 1 1 2 3
Instructor 2 5 4 3
Sum of the 6 6 6
preferences
Difference 4 2 0

In solution 1, instructor 1 is assigned to a course that is mostly desired by him whereas the second
instructor is assigned to his fifth preference. The value of the objective function in this solution is
obtained as 6. Similarly, the objective function values are obtained as 6 for both Solution 2 and Solution
3. With respect to this kind of objective function based on the total preference levels of the solution, all
three solutions are considered to be the same. However, in reality, the satisfaction levels of the
individuals have gaps that affect the overall performance of the system. Especially in the first case, the
second instructor is assigned to a course that is not very desirable for him while the first instructor is
assigned to his most preferred course. On the other hand, in Solution 3, both instructors have been
assigned to their third preferences and their satisfaction levels are not different. So, instead of using an
assignment procedure that results in the maximum satisfaction for an instructor while yielding a very low
satisfaction for another as in Solution 1, an assignment as in Solution 3 is more acceptable. A different



approach based on the deviations of individual preferences must be used. In order to get Solution 3, with
such an approach mentioned above, we set a min max objective function as follows:

min{maxt :y; 20
j

By doing this, we will get {5,4,3} as the maximum dissatisfaction levels of each feasible solution given
in Table 5. Then min {5,4,3}=3 will indicate the best solution as Solution 3 to optimize the overall
satisfaction in a more acceptable way.

As a result, the additivity assumption on preferences does not hold on the assignments. Moreover when
an instructor gives more than one course and the number of hours of the courses are different -as with our
problem- it is possible to extend the process along similar lines. In our case, each instructor teaches a
different number of courses, and the courses have different weekly hours. Thus we compute for each
instructor weighted mean of the preferences per hour. Then we define the first objective of the problem as
minimizing the maximum average preference level obtained for any feasible solution, as follows:
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The preference function involves a fraction, besides we use a a min max structure for which linearity does
not hold. Next we make the following transformation.
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For the third objective we define a goal constraint, and the deviational variables are minimized in the
objective function.
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By incorporating other two objectlves, and defining w;’s are the weights of the objectives, the objective

function takes form:
min (Wy; + W, ZZ Yija + ws Z(dj_ +d]))
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With this kind of weighted sum, the scalarization approach does not guarantee all pareto-optimal
solutions due to the fact that the convexity conditions do not hold. And this is because of the 0-1 decision
variables that problem has. On the other hand, weighted sum scalarization does guarantee to find at least
one pareto optimal solution and there are studies in the literature that solve the problem with scalarization
anyway. (Chang et all. 2000, Demirtas and Ustiin, 2008 (in press)).

This problem turns out to be a multi objective one by bringing other questions: How to establish the
weights of importance for different objectives? An Analytic Network Process model is used to weigh
different objectives of the problem. To construct an ANP structure, the parties influenced by the
problem’s stakeholders as well as those they have an influence on need to be added as clusters. Here
instructors and the administration are the parties that affect each another. A cluster for courses is defined
in order to take into account the considerations for the courses. And finally the objectives of the problem
are listed in a separate cluster named alternatives since the purpose is to get their relative priorities. Figure
1 shows a software screen view from the ANP structure of the problem when the mode to see the
connections is selected for state of belonging criterion. The elements bordered as dark are the ones that
affect the selected criterion. So it is seen that state of belonging is influenced by the weekly loads of
instructors, number of the students of courses, hard constrains and the overall performance of the system.
There are many dependencies and feedbacks among criteria and objectives as in this example. These kind



of dependencies can not be considered in an Analytic Hierarchy Process (AHP) model which assumes the

criteria to be independent. But this does not mean that ANP should always be used.
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Figure 1 The ANP model of the weighting problem -a sample screen view of the connections

By considering the connections made by the decision maker, required paired comparisons are performed.
Table 6 gives the synthesized values as the objective function weighs of the problem.

Table 6
ANP outcome
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W; 0.39 0.32 0.29

Table 7 gives the upper bounds on weekly loads of the instructors.
Table 7
Upper Bounds (in hours) on Weekly Loads for Instructors
Jj 1 2 3 4 s 6 7 8

u, 27 11 25 19 26 14 26 21

The multi objective faculty-course assignment problem is solved by Lingo 6.0 as the second step of the
approach. To keep the paper in a reasonable length, we only give the computational details for instructors
to compare the average satisfaction levels of them for both proposed and current assignments, as in Table
8 and Table 9, respectively.




Table 8

Proposed faculty course assignment and the corresponding average preference levels of the instructors
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9D ED ) 5 9B ED @) 3
4G TDE3 3) 3
4F TDE4 3) 3 4K TDE4 3 1
6B TET2 4H TDE4 3 1
02 )] 5 3 06 (%) 3
6D TET2 @ 1 9A ED 4 3
9L ED 4 6
4K ED1 “ 3 4D TDE3 3) 1
4H ED2 6) 1 4E TDE4 3) 4
4B TDE4 3 3 4F ED1 6 3
03 ) 291 07 ©) 2.65
4C TDE4 3) 3 4G EDI ) 2
6A TDE4 3) 5 9E ED ) 3
6E TET2 4) 4
9C ED 4 3 4L TDE3 3) 4
9N ED () 4 4A TDE4 3) 1
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As an example, the average preference level for the first instructor in Table 8 is calculated as follows:
Mpooe ™ Lodvroe ™ 10%soe ™1 Mpoe ™ 1o dagoe ™ 1 Mpops ™ 1o dpee @ 1
which correspond the courses 4G TDE3, 9D ED, 9F ED, 9H ED, 91 ED, 9M ED, 90 ED.
Crpspe * 323 + Jgupesd v bt dgpp vl vt Fopppe # 10 b4 Mpgpe # 2% + Mppoa 3 4+ Jpgpe 20 4]
(A+d+dLd L dL44 4
73
=—="2
77 =

The numbers used to reflect the preferences are 1,2,3,4,5, 6 and 100 for an undesirable assignment. This
means that any average preference level greater than six implies at least one unpreferred course assigned
to the instructor. It is clear in Table 9 that Instructors 3,5,7 and 8 are currently assigned courses they do
not prefer to teach. Especially none of the courses assigned to 7™ instructor are preferred by him. Table 8
and 9 confirm that the proposed assignment contrasts strongly with the current situation. In the proposed
assignment, none of the assigned courses is considered very unpleasant to the instructors. Not so in
current practice.




Table 9

Current faculty course assignment and the corresponding average preference levels of the instructors
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In Table 10 we summarize the values of the objective functions for both assignments. The proposed
assignment far improves the optimum value.

Table 10
Objective function values

. Wi=039  Wor=032 W3-0.29 Overall value
Objectives f f f
1 2 3
Current assignment 100 105 29 81,01
Proposed assignment 3 113 8 39,65

3. Conclusion

A two phased approach has been implemented to solve course-time slot assignment first, and then to the
course-instructor assignment problem.

In the course-time slot schedule as the outcome of the first phase, instructors are asked to give their
preferences on the courses they would like to teach. Three objectives related to the instructor’s average
satisfaction levels, administrative preference levels and finally the deviations from the upper teaching




loads of the instructors are defined. Since the objectives do not have the same importance, an Analytic
Network Process model is used to weigh them. Demonstrated in Table 10, the total dissatisfaction on the
objectives declines from 81,01 to 39,65. In the proposed solution none of the parties comes out very
dissatisfied on any of the assignments. Dissatisfactions for faculty members 3,5,7 and 8 remarkably
decline to 2.95 at the worst case. The total deviations from the upper weekly teaching loads of the
instructors are decreased from 29 to 8. Finally, the value for total administrative preference on instructor
course assignments is increased from 105 to 113 which is the only undesirable outcome that we do not
consider to be significant.

One might say that the approach may contribute to the happiness of the people involved.
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