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Abstract. A faculty-course-time slot assignment problem is studied. The multiobjective 
0-1 linear programming model considering both the administration’s and instructors’ 
preferences is developed and a demonstrative example is included. Both modeling and 
solving such problems are difficult tasks due to the size, the varied nature, and conflicting 
objectives of the problems. The difficulty increases because the individuals involved in 
the problem may have different preferences related to the instructors, courses and time 
slots. The Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) are 
used to weight different and conflicting objectives. These weights are used in different 
scalarization approaches. The scalarized problems are solved using a standard 
optimization package, and solutions corresponding to AHP and ANP weights are 
compared. 
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1. Introduction 

The problem of constructing timetables for educational institutions is a classical 

combinatorial problem that requires finding a schedule to determine which courses will 

be given in which classrooms by which instructors at which time slots. These problems, 

which are NP-complete mainly due to the associated constraints, have been studied in 

some detail over the last few decades among others by Even et al. (1976), de Werra 

(1985), Cooper and Kingston (1996), Daskalaki et al. (2004). In the academic 

environment there are organizational and individual constraints that influence the 

assignment problem. Due to the varied nature and the complexity of the problem, it is 

difficult to find a general procedure to solve such problems. In many cases it may be 

difficult to find even a feasible point. Therefore these problems have also been 
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considered within different decomposion forms such as class teacher timetabling, faculty 

course and/or faculty course time slot assignments and so on.  

Asratian and de Werra (2002) considered a theoretical model which extends the basic 

class teacher model of timetabling. This model corresponds to some situations which 

occur frequently in the basic training programs of university and schools. It has been 

shown that this problem is NP complete founded in some sufficient conditions for the 

existence of a timetable. Kara and Ozdemir (1997) presented a min max approach to the 

faculty course assignment problem by considering faculty preferences. Badri (1996) 

proposed a two-stage optimization model to maximize faculty-course preferences in 

assigning faculty members to courses and then faculty time preferences in allocating 

courses to time blocks. Badri’s paper also describes an application of the model to the 

United Arab Emirates University. Hertz and Robert (1998) proposed an approach for 

tackling constrained course scheduling problem. Their main idea is to decompose the 

problem into a series of easier sub problems. Each sub problem is an assignment problem 

in which items have to be assigned to resources subject to some constraints. Daskalaki 

and Birbas (2005) also developed a two-stage relaxation procedure that solves the integer 

programming formulation of a university timetabling problem. Relaxation is performed in 

the first stage and concerns constraints that ensure consecutiveness in multi-period 

sessions of certain courses. These constraints, which are computationally more complex 

than the others, are recovered during the second stage and a number of sub-problems, one 

for each day of the week, are solved for local optima.  

One of the main advantages provided by the decomposition of timetabling problems is 

that the solution process becomes easier than that of the whole problem. Compared to a 

solution approach that solves the problem in a single stage, computation time for 

decomposed problems is reduced significantly; nevertheless there may be some loss in 

the quality of the solution.  

In this paper we consider a sub problem of the general timetabling problem in the form of 

faculty-course-time slot (FCT) assignments in a single stage. This study is a continuation 

and generalization of the faculty-course assignment problem considered earlier by 



 3

Ozdemir and Gasimov (2004). They constructed a multi objective 0-1 nonlinear model 

for the problem, considering participants’ average preferences and explained an effective 

way for its solution. 

Note that the administration’s and instructors’ preferences in specific course and time slot 

assignments are important considerations. By considering these preferences, participants 

would be encouraged and as would thus also affect the student’s performances during the 

lectures. As a result, the overall performance of the educational system is likely to 

increase. We develop a linear 0-1 multiobjective model for this problem in which 

objective functions related to the administration’s total preferences on instructor-course 

and course-time slot assignments and instructors’ total preferences on instructor-course-

time slot assignments would be maximized simultaneously. Besides, the model also 

includes the administration’s objective functions to minimize the total deviation from the 

instructors’ upper load limits. To demonstrate the features of our model a special example 

has been constructed. Because of the multiobjective nature of the FCT model, the 

solution process of this problem has been considered in two stages: scalarization of the 

given problem, and solving the scalarized problem. Because of the 0-1 nature of the 

problem the special scalarization approach called conic scalarization is applied. The 

Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP) are used to 

determine the weights of conflicting objectives. Efficient solutions corresponding to both 

sets of weights have been calculated and the results compared. GAMS/CPLEX solver 

was used to solve the scalarized problems. 

Outline of the paper is as follows: The problem formulation and the corresponding 

mathematical model are presented in Section 2. Section 3 provides an illustrative 

example. Section 4 develops the solution approach, calculation of objective weights, 

scalarization and numerical results. Some conclusions drawn from the study are presented 

in Section 5.  

2. Problem formulation 

The model involves instructor-course-time slot assignments and instructor-course and 

course time slot assignments in a single stage. The term time slots used here is related to 
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some partitioning of one teaching day. For example 8:00 am – 9:45 am, 10:00 am – 11:45 

am, 1:00 pm – 2:45 pm, 3:00 pm – 4:45 pm and 5:00 pm – 6:45 pm may be a set of 

possible time slots. In this case some numeration can be assigned to time slots beginning 

at 8:00 am, 10:00 am, 1:00 pm, 3:00 pm and 5:00 pm as the 1st time slot, the 2nd time slot 

and so on, the 5th time slot. It is assumed that each instructor is able to give more than one 

specific course. However each instructor may or may not be able to give all the courses 

considered. 

The educational system (school) has the following kinds of requirements: 

• Each course must be assigned to only one instructor. 

• The weekly load of each instructor must be between his lower and upper limits. 

• The number of parallel courses might be given on the same time slot is bounded 

by the availabilities (for example, by the number of available classrooms) of the 

school. 

• The number of the same time slots assigned to each instructor is bounded. This 

requirement is made to prevent accumulation of all assignments of some 

instructor to an undesired (or to most desired) time slot. For example, all 

instructors may prefer time slot corresponding to 10:00 am – 11:45 am while a 

time slot corresponding to 5:00 pm – 6:45 pm may be undesirable. 

The school administration has preferences for instructor-course and course-time slots 

assignments. Besides, the instructors have preferences for both courses that would be 

given by them and for time slots during which their assigned courses would be given. As 

we mentioned earlier, participants’ preferences have an important role to increase the 

overall efficiency of the educational system. These preferences have been considered via 

objective functions in our model. The model parameters, decision variables and objective 

functions are defined as follows. 

Parameters 

Let 

I = {i: i=1,2,…,m} be the set of instructors, 

J = {j:  j=1,2,…,n} be the set of courses, 
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T = {t: t=1,2,…,s} be the set of time slots, 

ct      be the number of parallel courses might be given on time t, 
 
hj       be the total number of lecture hours for jth course in a week, 
 
li and ui    be lower and upper hours of the ith instructor’s weekly load, 
 
aij              be the administration’s preference level for the assignment of jth course to the  
                 ith instructor, 
 
bjt              be the administration’s preference level for the assignment of jth course to the  
                 tth time slot. 
 
pijt        be the preference level of ith instructor for the jth course to be given at time 
slot t. 
 
dt              be the maximum number for time slot t that might be assigned to each 

instructor during the week. 
 
A       as a large positive constant, e.g. A=s. 
 
B       as a large positive constant, e.g. B=m. 
 
Decision variables: 
 

1 if th instructor is assigned to th course,
0 otherwise.ij

i j
y

,
⎧⎪⎪= ⎨⎪⎪⎩

 

 
1 if th course is given on time ,
0 otherwise.jt

j t
z

,
⎧⎪⎪= ⎨⎪⎪⎩

 

 
1 if th course is given by th instructor on time ,
0 otherwise.ijt

j i t
x

,
⎧⎪⎪= ⎨⎪⎪⎩

 

 
Objective functions. 
 
Objective functions are constructed by maximizing the preference levels of each 

instructor on instructor-course-time slot assignments and maximizing the administrations’ 

total preference levels on instructor-course and course-time slot assignments. 

Maximization of preferences can be expressed as maximization or minimization of the 

corresponding objective function independently of the preference order defined. It can be 

defined for some scale for all preferences. For example the numbers 1, 2,…, 9 can be 
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assigned to preferences aij (bjt  and pijt ), where the number 1 indicates the most desired 

case, and 9 the most undesired one. In this case the maximization of preferences will be 

expressed as minimization of the corresponding objective functions. Objective functions 

can be divided into two groups: objectives related to instructors’ preferences on 

instructor-course-time slot assignments and objectives related to the administration’s 

preferences on instructor-course, course-time slot assignments and an objective function 

related to the teaching load limits of instructors. 

Let (x,y,z) be a general vector of all decision variables: x=(xijt, yij, zjt), i∈I, j∈J, t∈T. 

 
We have the following objectives: 
 

• Minimize the instructors’ preference levels Li on course-time slot assignments: 
 

Li (x,y,z)=∑∑
∈ ∈Jj Tt

jijtijt hpx , i∈I. (1) 

• Minimize the administrations total preference level on instructor-course 
assignments 

 
A1 (x,y,z) =∑∑

∈ ∈Ii Jj
ijij ya  (2) 

 
• Minimize the administrations total preference level on course-time slot 

assignments 
A2 (x,y,z) = ∑∑

∈ ∈Jj Tt
jtjt zb        (3) 

 
• Minimize the total deviation from the upper load limits of the instructors 

 
A3 (x,y,z) = ∑ ∑

∈ ∈

−
Ii Jj

jiji hyu )(       (4) 

 
Formulation of the multiobjective integer linear programming (MOILP) model of the 
problem under consideration is given below. 
 

Minimize [L1,…, Lm, A1, A2, A3]      (5) 
 

subject to 
 

1ij
i I

y , j J
∈

= ∀ ∈∑ ,        (6) 
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∑
∈

≤≤
Jj

ijiji uhyl , Ii∈∀ ,       (7) 

 
Error! Objects cannot be created from editing field codes., Tt ∈∀    

     (8) 
 

∑
∈

≤
Jj

tijt dx , TtIi ∈∈∀ ,        (9) 

 
∑
∈

≤
Tt

ijijt Ayx , JjIi ∈∈∀ ,        (10) 

 
∑
∈

≥
Tt

ijijt yx , JjIi ∈∈∀ ,        (11) 

 
∑
∈

≤
Ii

jtijt Bzx , TtJj ∈∈∀ ,         (12) 

 
∑
∈

≥
Ii

tjijt zx , , TtJj ∈∈∀ ,         (13) 

xijt, yij, zjt∈{0,1} JjIi ∈∈∀ , , t T∈       (14) 
 
The constraint sets (6) and (7) ensure that each course must be assigned to only one 

instructor and the weekly load of each instructor must be between his lower and upper 

limits respectively. The constraint set (8) guarantees that at most ct parallel courses are 

given on time slot t. The constraint set (9) guarantees that the number of time slot t 

assigned to each instructor i does not exceed dt. If any instructor-course pair (i,j) is 

assigned to some time slot, constraint set (10) forces yij=1. If the pair (i,j) is not assigned 

to any time slot, then the left-hand sides of the corresponding two inequalities in 

constraint sets (10) and (11) are zero, and hence, the constraint set (11) forces yij=0. 

Similarly, if any instructor is assigned to some course-time slot pair (j,t), the constraint 

set (12) forces zjt=1. If no instructor is assigned to the pair (j,t), then the left-hand sides of 

the corresponding two inequalities in the constraint sets (12) and (13) are zero, and hence, 

the constraint set (13) forces zjt=0. 
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Any optimum solution to the MOILP model answers the question of which instructors 

have to be assigned to which courses at which time slots in order to simultaneously 

maximize the satisfaction levels of instructors and administration. Such a solution also 

answers the other questions of which instructors have to be assigned to which courses and 

which courses have to be assigned to which time slots separately. Although all these 

assignments are concordantly formulated in the model, they express preferences of 

conflicting participants. Because of the conflicts between these assignments, any 

optimum solution not only realizes the assignment with “maximum” preferences (in the 

sense of Pareto efficiency), but also demonstrates the degrees of satisfaction of the 

participants, or the weights of importance for the objectives. Many MCDM methods 

require the use of weights or degrees of importance of objectives. The studies have 

brought forth the question: How to establish a weight of importance or priority for the 

objectives? Here we use both Analytic Hierarchy Process (AHP) and the Analytic 

Network Process (ANP) to obtain these weights. The AHP and ANP are the most 

effective methods for determining the weights of importance of the different criteria. 

These methods can be characterized as multi-criteria decision techniques that can 

combine qualitative and quantitative factors in the overall evaluation of alternatives. 

 
3. An application – a demonstration example 

We consider a particular problem with 6 instructors, 10 courses and 5 time slots. The 

preference levels aij, bjt and pijt are shown in tables 1, 2 and 3-1, 3-2…, 3-6 respectively. 

For other characteristics of this particular problem see section 4.1. 

 
 
 



 9

 
 
Table 1.    aij-the administration preferences on giving course j  by instructor i 
 

i \  j 1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 8 9 9 9 9 9 

2 8 8 8 9 9 1 2 9 9 9 

3 9 9 9 9 9 8 1 2 3 4 

4 1 2 3 9 9 9 9 9 9 9 

5 9 9 9 9 9 9 9 1 2 3 

6 9 9 9 9 9 9 9 3 2 1 

 
 
Table 2. bjt – the administration preference levels on giving the course j on time t. 
 

j \ t 1 2 3 4 5 

1 1 3 5 6 9 

2 1 2 3 6 9 

3 1 2 3 4 9 

4 2 1 3 6 9 

5 3 1 2 5 9 

6 3 2 1 4 9 

7 4 3 1 2 6 

8 6 5 4 1 2 

9 7 6 5 2 1 

10 9 7 6 2 1 
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Table 3-1.  p1jt - preference levels for 1st instructor on course-time slot  
                    assignments. 
 

j \t 1 2 3 4 5 

1 1 2 3 7 9 

2 2 1 3 7 9 

3 3 2 1 6 9 

4 9 6 2 1 3 

5 9 6 1 2 7 

6 9 9 9 9 9 

7 9 9 9 9 9 

8 9 9 9 9 9 

9 9 9 9 9 9 

10 9 9 9 9 9 

 
 
Table 3-2.    p2jt - preference levels for 2nd instructor on course-time slot  
                    assignments. 
 

j \ t 1 2 3 4 5 

1 1 2 3 7 9 

2 2 1 3 7 9 

3 3 2 1 6 9 

4 9 9 9 9 9 

5 9 9 9 9 9 

6 4 2 1 3 6 

7 6 3 1 2 5 

8 9 9 9 9 9 

9 9 9 9 9 9 

10 9 9 9 9 9 
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Table 3-3.     p3jt - preference levels for 3rd instructor on course-time slot  
                       assignments. 
 

j \  t 1 2 3 4 5 

1 9 9 9 9 9 

2 9 9 9 9 9 

3 9 9 9 9 9 

4 9 9 9 9 9 

5 9 9 9 9 9 

6 3 2 1 4 6 

7 3 1 2 5 7 

8 9 5 3 1 2 

9 9 7 3 2 1 

10 9 6 2 3 1 

 
 
Table 3-4.    p4jt - preference levels for 4th instructor on course-time slot  
                     assignments. 
 

j \  t 1 2 3 4 5 

1 1 2 3 5 7 

2 2 1 4 6 9 

3 1 2 3 7 9 

4 9 9 9 9 9 

5 9 9 9 9 9 

6 9 9 9 9 9 

7 9 9 9 9 9 

8 9 9 9 9 9 

9 9 9 9 9 9 
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10 9 9 9 9 9 

 
Table 3-5.    p5jt - preference levels for 5th instructor on course-time slot  
                    assignments. 
 

j \  t 1 2 3 4 5 

1 9 9 9 9 9 

2 9 9 9 9 9 

3 9 9 9 9 9 

4 9 9 9 9 9 

5 9 9 9 9 9 

6 9 9 9 9 9 

7 9 9 9 9 9 

8 9 4 2 1 3 

9 9 7 1 3 2 

10 7 6 3 2 1 

 
 
 
Table 3-6.  p6jt - preference levels for 6th instructor on course-time slot  

assignments. 
 

j \  t 1 2 3 4 5 

1 9 9 9 9 9 

2 9 9 9 9 9 

3 9 9 9 9 9 

4 9 9 9 9 9 

5 9 9 9 9 9 

6 9 9 9 9 9 

7 9 9 9 9 9 

8 9 7 6 2 1 

9 9 6 7 1 2 
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10 7 6 3 1 2 

 
4. The Solution, How? 

Different heuristic approaches have been developed for solving timetabling and related 

problems, see for example Bloomfield and Mc Sharry (1979), Costa, (1994), Dowsland 

(1997), Melício et al. (2000) and references therein. Ozdemir and Gasimov (2004) 

developed an exact solution approach for solving the multiobjective nonlinear faculty-

course assignment problem with preferences. 

In this paper we examine the exact solution approach for solving the FCT problem 

constructed in the previous section. Exact solution approaches used for solving such 

problems generally encounter two main difficulties. The first is has to do with the 

solution time, which increases exponentially with the number of integer decision 

variables and the second is the nonconvexity of the problem which again is a result of the 

existence of integer variables, even though the objective and constraint functions in such 

models are all linear. 

Because of the multiobjective nature of the FCT model, a solution process of this 

problem has been considered in two stages: 

1) Scalarization of the given problem, and 

2) Solving the scalarized problem. 

As we said before, the objective functions’ weights that we need for scalarization have 

been determined using both the AHP and ANP (see section 4.1). Efficient solutions 

corresponding to both sets of weights have been calculated and the results compared (see 

section 4.3). 

Because of the nonconvexity of the problem under consideration a special scalarization 

approach proposed by Gasimov (2001), is implemented (see, section 4.2). 
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For solving the scalarized problems GAMS/CPLEX solver was used. Documentation and 

information about GAMS are available via the World Wide Web at the URL: 

www.gams.com.  

 
 4.1 Calculation of Objective Function Weights Using Analytic Hierarchy  

and Network Processes 

AHP and ANP methods developed by Saaty (2000, 2005), are the most effective methods 

for determining the priorities of the different criteria. The solution approach proposed in 

this study includes objective functions’ priorities obtained using AHP and ANP. The six 

instructors in the system under consideration are grouped as tenured and recent, each 

consisting of three teachers. Recent instructors have less than five years work experience. 

The administration requests them to teach more hours (which mainly include basic course 

applications) than tenured faculty. The nine objectives were divided into three groups 

with three functions in each: tenured instructor’s objective functions; recent instructor’s 

objective functions and objective functions representing the administration’s interests. All 

the objectives were then weighted by their individual and group priorities and then 

combined, thus obtaining a single satisfaction function for all the people involved.  

The AHP and ANP use different ways to derive priorities. The AHP assumes that the 

criteria (the objectives in our case) are independent and use a hierarchic structure from 

top to bottom to weigh them. The ANP considers dependence and feedback among the 

elements to be compared. Here we calculate the weights by using both methods and then 

compare the results. 

4.1.1 Calculation of AHP weights 

To keep the paper within reasonable length, we will not give computational details 

instead we will briefly present the judgment matrix and the corresponding priorities as 

shown in Table 4. This judgment matrix has been filled by the decision maker via Expert 

Choice software.  
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Table 4. The Paired comparison matrix for objectives and the priority vector 
 A1 A2 A3 L1 L2 L3 L4 L5 L6 Priority 

vector 
A1 1 2 2 2 3 3 2 2 3 0.219 

A2 1/2 1 1 2 3 3 3 3 3 0182 

A3 1/2 1 1 1 2 2 2 2 2 0.119 

L1 1/2 1/2 1 1 2 2 1 1 2 0.105 

L2 1/3 1/3 1/2 1/2 1 1 1 1 1 0.054 

L3 1/3 1/3 1/2 1/2 1 1 1 1 1 0.070 

L4 1/2 1/3 1/2 1 1 1 1 1 1 0.090 

L5 1/2 1/3 1/2 1 1 1 1 1 1 0.090 

L6 1/3 1/2 1/2 1/2 1 1 1 1 1 0.070 

 

4.1.2 Calculation of ANP weights 

To construct an ANP structure, we need to add the parties that are influenced by the 

problem stakeholders as well as those that they have an influence on. For our problem, 

instructors and the administration are the parties that affect and/or are also affected by 

one another. We list our objectives as a separate cluster named alternatives since our 

purpose is to obtain their relative priorities. The ANP network structure of the problem is 

shown in Figure 1. For an ANP application, we perform paired comparisons on the 

elements within the clusters themselves according to their influence on each element in 

another cluster they are connected to (outer dependence) or on elements in their own 

cluster (inner dependence). In making comparisons, one must always has a criterion in 

mind.  Comparisons of elements according to which element influences a given element 

more and how strongly more than another element it is compared with are made with a 

control criterion in mind. According to Figure 1, recent instructors have an influence on 

the alternatives, and also on the administration. These elements also influence recent 

instructors. So there is dependence among them in both ways. When we only consider the 

recent instructor cluster, the paired comparison questions arise as a result of its 

connections to other clusters as can be seen in Figure 2. According to this view, the 

administration has three times more influence than alternatives on recent instructor. 
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Similarly, alternatives have two times more influence than recent instructors on recent 

instructors. 

 

 
Figure 1. ANP structure of the problem 
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Figure 2. A screen view 

Each paired comparison set gives local priorities. By considering the set of previous 

comparison, the administration has the most influence on recent instructor with priority of 

0.593 followed by alternatives with priority 0.249 and recent instructors come last with 

priority of 0.157. 

Since our objective is to find the overall priority values for each objective, we perform 

paired comparisons on all clusters as they influence each cluster to which they are 

connected with respect to the given control criterion.  Table 5 gives the objective function 

weights for the entire ANP model. 

Table 5. Overall Outcome 
Objective 1L  2L  3L  4L  5L  6L  1A  2A  3A  

Weight ( iw ) 0.087 0.046 0.065 0.074 0.087 0.045 0.184 0.251 0.157 

 
 
Table 6 lists both sets of objective function weights obtained by the AHP and ANP. 
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 Table 6. Objective function weights obtained by AHP and ANP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2. Scalarization 

Scalarization means combining different objectives into a single objective in such a way 

that repeatedly solving the single objective optimization problem with varying parameters 

allows us to find all efficient (or properly efficient) solutions of the initial multiobjective 

problem. Many scalarization methods are known; see Chankong and Haimes (1983), (Luc 

1989), Gasimov (2001), Rubinov and Gasimov (2004) and Ehrgott (2005).  

We use here the so called conic scalarization approach proposed by Gasimov (2001). 

Gasimov introduced a class of increasing convex functions to scalarize the multiobjective 

problem without any assumptions on objectives and constraints of the problem under 

consideration. This approach is based on supporting the image set of the problem by 

using cones instead of hyperplanes used in the weighted scalarization. Another advantage 

of this approach is that it preserves convexity, if the objective functions and constraints of 

the initial problem are linear or convex. Note that this approach has been successfully 

applied to a multiobjective 0-1 faculty course assignment problem studied by Ozdemir 

and Gasimov (2004). Now we briefly present the main scalarization results of Gasimov 

(2001). 

Objective 
functions 

ANP weights AHP weights 

A1 0.184x1000=184 0.219 x1000=219 
A2 0.251x1000=251 0.182 x1000=182 
A3 0.157x1000=157 0.119 x1000=119 
L1 0.087x1000=87 0.105 x1000=105 
L2 0.046x1000=46 0.054 x1000=54 
L3 0.065x1000=65 0.070 x1000=70 
L4 0.074x1000=74 0.090 x1000=90 
L5 0.087x1000=87 0.090 x1000=90 
L6 0.045x1000=45 0.070 x1000=70 
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Let ( ){ }9 9
1 9   0 1 9iR u u ,...,u R u ,i ,...,+ = = ∈ ≥ = .  

Definition 1 Let S be a nonempty subset of R9.  

a) An element Ss∈  is called a Pareto minimal element of the set S, written ( )Ss min∈ , if 

{ }( ) { }9s R S s+− ∩ = . 

b) An element Ss∈  is called a properly minimal element of S (in the sense of Benson), 

written ( )Sps min−∈ , if s is a Pareto minimal element of S and the zero element of 9R  

is a Pareto minimal element of cl cone(S+ 9R+ -{s}), where cl denotes the closure of the set 

and ( ) { }SsandsScone ∈≥= 0: λλ . 

We can formulate our FCT problem in the form: 

 (MOILP) 
( )

( ) ( )1 9x ,y ,z X
min F x, y,z ,...,F x, y,z ,

∈
⎡ ⎤⎣ ⎦  

where X is the set of binary feasible solutions defined by the constraints (6)-(14), and the 

functions F1-F6 correspond to functions L1-L6, and F7-F9 to A1-A3 respectively (see (5) 

and (1)-(4) for corresponding definitions). 

Let ( ) ( ) ( )( )1 9F x, y,z F x, y,z ,...,F x, y,z= , and let ( )XF  be the image of X. 

Definition2 ( )x , y ,z X∈  is called a Pareto efficient solution of (MOILP) 

if ( ) ( )( )F x , y ,z min F X∈ ; ( )x , y ,z X∈  is called a proper efficient solution of 

(MOILP) (in the sense of Benson), if ( ) ( )( )F x , y ,z p min F X∈ − . 

Let 

( ) { }{ }9
1 9 1 90 0W : ,w R R min w ,...,w , w ,...,wα α= ∈ × ≤ < > .  (15) 

Theorem 1 Suppose that for some ( ) Ww ∈,α  an element ( )x , y ,z X∈ is an optimal 

solution to the following scalar minimization problem: 

( )
( ) ( )

9 9

1 1

  i i ix ,y ,z X i i

min F x, y,z w F x, y,zα
∈ = =

⎡ ⎤
⎢ ⎥+⎢ ⎥⎣ ⎦
∑ ∑ .    (16) 

Then the triple ( )x , y ,z X∈  is a proper efficient solution of (MOILP). 

 



 20

Theorem 2 Suppose ( )x , y ,z X∈ is a proper efficient solution of (MOILP). Then there 

exists an element ( ),w Wα ∈ , such that ( )x , y ,z X∈ is an optimal solution to the 

following scalar minimization problem: 

( )
( ) ( ) ( ) ( )

9 9

1 1
i i i i ix ,y ,z X i i

min F x, y,z F x , y ,z w F x, y,z F x , y ,zα
∈ = =

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤− + −⎨ ⎬⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ . (17) 

Theorem 1 asserts that any solution of the (scalar) problem (16) is an efficient solution of 

the problem (MOILP). On the other hand, Theorem 2 claims that every efficient solution 

( )x , y ,z of (MOILP) can be calculated by solving a scalar problem of the form (17) for 

some pair ( ),w W .α ∈  Thus, these theorems assert that the problem (MOILP) can be 

scalarized in the form (16) and/or (17), and all efficient solutions of (P) can be calculated 

by solving scalar problems of these forms. Regarding the solutions of problem (16), note 

that in the case where the signs of the objective functions remain unchanged in the set of 

feasible solutions, then the absolute values in (16) are not essential in the whole 

expression and it reduces to an expression representing the weighted scalarization. This 

situation can be overcome as follows. It is easy and well-known to show that the 

following two problems have the same set of efficient solutions: 

 
( )

( ) ( )1 9x ,y ,z X
min F x, y,z ,...,F x, y,z ,

∈
⎡ ⎤⎣ ⎦  and 

( )
( ) ( )1 1 9 9x ,y ,z X

min F x, y,z B ,...,F x, y,z B ,
∈

⎡ ⎤− −⎣ ⎦     (18) 

where B1,…,B9 are arbitrary fixed numbers. By choosing these numbers in the interior of 

ranges of F1,…,F9 respectively, we can replace the objective functions by new ones for 

which the conic scalarization approach will work more effectively. When the 

multiobjective problem under consideration is nonconvex, by taking different values for 

the parameter α and the numbers B1,…,B9, different efficient solutions corresponding to 

the same set of weights w1,...,w9, can be obtained by solving the scalarized version of the 

problem (18) of the form: 

 
( )

( ) ( )
9 9

1 1
i i i i ix ,y ,z X i i

min F x, y,z B w F x, y,z Bα
∈ = =

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤− + −⎨ ⎬⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ .  (19) 
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4.3. Numerical results 

The demonstration example constructed above is solved for different values of the 

parameter α and the same set of weights obtained by AHP and ANP. The corresponding 

objective functions’ values along with the values of α, are presented in Tables 7 and 8 

respectively. 

             
Table 7.   Objective functions’ values obtained for AHP weights  

                             and different α values 
Objective 

functions 
α =0 α =10 α =30 α =40 α =45 

       A1 28 28 28 28 28 

       A2 15 15 15 15 15 

       A3 38 38 38 38 38 

       L1 9 9 9 9 9 

       L2 8 8 8 8 8 

       L3 4 4 4 4 4 

       L4 6 6 6 6 6 

       L5 4 4 4 4 4 

       L6 4 4 4 4 4 

 

              
As can be seen from Tables 7 and 8, no different solutions have been obtained for the 

AHP weights using simple weighted and conic scalarization methods. In these tables the 

column α=0 corresponds to the weighted scalarization case, see (19). On the other hand, 

weighted and conic scalarization methods gave two different Pareto efficient solutions for 

the ANP weights. As it follows from the explanations on the conic scalarization approach 

presented in Section 4.2, this approach can provide many efficient solutions 

corresponding to the same set of weights for objective functions. By varying the 

parameters α. and Bi, it is possible to calculate different efficient solutions. It is 

remarkable that two different solutions have been obtained for the same (ANP) weights in 

our example, although one of them is the same as the solution obtained for the AHP 

weights. 
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Table 8.   Objective functions’ values obtained for ANP weights and  
                              different α values 

Objective 

functions 
α=0 α =10 α =30 α =40 α =45 

       A1 28 28 28 28 28 

       A2 13 13 15 15 15 

       A3 38 38 38 38 38 

       L1 9 9 9 9 9 

       L2 8 8 8 8 8 

       L3 4 4 4 4 4 

       L4 9 9 6 6 6 

       L5 4 4 4 4 4 

       L6 8 8 4 4 4 

 

 

5. Conclusions 

In this study a new multiobjective model for faculty course time slot assignment problem 

has been developed. This model considers faculty–course–time slot assignments in a 

single stage with paired faculty-course and course-time slots assignments. The 

significance of our model is that it considers all the instructors’ and administration’s 

preferences on faculty-course-time slot assignments and faculty-course, course-time slot 

assignments respectively. Considering the pedagogical aspects of such assignments is an 

important contribution to the performance of an educational system.  

By using an exact solution approach Pareto efficient solutions have been calculated for a 

demonstration example that is constructed. The solution approach implemented here uses 

priorities obtained by the AHP and ANP. These priorities are used in a conic scalarization 

method for combining different and conflicting objectives and the scalarized problems 

are solved by applying GAMS/CPLEX solver. 
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It is remarkable that two different sets of solutions have been obtained for the same set of 

weights (calculated by the ANP), which is an important feature provided by the conic 

scalarization method.   

This study can be considered as an important stage in the classical course scheduling 

problem. It is very important that the term time slots used in this paper relates not to a 

specific time block of the week, but to a specific partitioning of a working day, 

considering the pedagogical aspects. By using the outcomes of this problem, the more 

general timetabling problems in educational institutions can be solved more effectively.   
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