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ABSTRACT

Individual judgments are sought in order to elicit values of the entries of pairwise comparison matrices in
Analytic Hierarchy Process (AHP). Some of these matrices are more consistent than others. But throwing
out inconsistent matrices reduces the number of matrices. In this article, we propose a resampling technique
to generate sets of pairwise comparison matrices which pass the consistency check. The advantage of the
resampling technique is that one can generate as many sets of pairwise comparison matrices as needed to
select the ones which satisfy the consistency requirement. Based on these selected matrices, the priority
weights of the alternatives are then estimated. We propose rank-based statistical procedures to check
the significance in the difference between estimated priorities of the alternatives to establish their most
significant rank order.

Key Words: Bootstrap, Priority Weights, Kruskal-Wallis Statistic, Rank-Based Hypothesis Testing, Re-
sampling Method.

1 Introduction

The Analytic Hierarchy Process (AHP) developed by Saaty (1977, 1980) is a popular and practical tool
for dealing with complex decision problems. Often decision has to be made on the choice of one or few of
the several alternatives. In other situations, priorities for different alternatives have to be sought. In all
these decision situations, different alternatives need to be evaluated with respect to a number of criteria.
In AHP, a hierarchic or network structure is used to simplify and represent the decision problem with its
elements (criteria and alternatives). At each level of the hierarchy, pairwise comparison values of decision
elements are used to arrive at priority scores of the elements under consideration. Expert opinion is
often sought for these pairwise comparison values. Let the intensity of preference of alternative Ti over
alternative Tj be denoted by aij for i < j; i, j = 1, 2, · · · , t. These aij values are the entries of a matrix
which is called pairwise comparison matrix. The elicitation of these preferences sometimes gives rise to
the inconsistency condition aijaju 6= aiu. Some pairwise comparison matrices are more inconsistent than
others. But throwing out inconsistent matrices reduces the number of pairwise comparison matrices to be
used for determining the priorities for different alternatives.

2 Literature Review

Saaty (1980) defines the Consistency Ratio (CR) CR = CI
RCI as the measure of the inconsistency of a

pairwise comparison matrix. CI is the Consistency Index of a pairwise comparison matrix and is given
by CI = λmax−t

t−1 , where λmax is the largest eigenvalue of the pairwise comparison matrix. RCI is the
Random Consistency Index and is derived by the average of CI values for randomly generated matrices of
the same size. RCI values given by Saaty (2001) are provided in Table 1 for different values of t.In the AHP
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pairwise comparison matrices are considered to be of acceptable consistency if CR ¡ 0.1. In some cases,
Saaty (2001) requires that CR to be less than 0.05 for t=3 and less than 0.08 for t=4. However, in reality
it is difficult to obtain matrices which satisfy these consistency criteria because of limited ability of human
thinking to be consistent, particularly for a larger number of alternatives. Several authors have considered
this issue of consistency in AHP either for individual or for the group decision making situation. Finan and
Hurley (1996) proposed a procedure to construct a rank-order consistent matrix while Zeshui and Cuiping
(1999) proposed a consistency improving method in AHP. Stein and Mizzi (2007) introduced a harmonic
consistency index. Xu (2000), Lin et. al. (2008), Groselj and Stirn (2012) considered a weighted geometric
mean complex judgment matrix for the consistency in the group decision making situation using AHP.

In practice, the issue of inconsistencies of these pairwise comparison matrices exists and needs to be
dealt with. One possible way is returning the inconsistent matrices to the experts for reconsidering the
entries of the matrix until the matrices with acceptable CR are obtained. But it is not practical because
of the large amount of time and cost involved.

3 Hypotheses/Objectives

In this article, we propose a resampling technique called Bootstrap to generate sets of pairwise comparison
matrices. Based on adequate number of Bootstrap generated matrices, one can ensure a fixed number
of matrices with acceptable CR. These, in turn, generate replications of priority vectors of alternatives.
Statistical significance tests of the difference in the estimated priorities of the decision alternatives would
be possible by these repeated measurements. We propose rank-based statistical procedures to check the
significance in the difference between estimated priorities of the alternatives and also to establish their
most significant rank order.

4 Research Design/Methodology

Let akij be the intensity of preference of alternative Ti over alternative Tj given by the k-th expert for
i < j; i, j = 1, 2, · · · , t and k = 1, 2, · · · ,m. Let Ak be the pairwise comparison matrix composed of
these akij values given by the k-th expert, k = 1, 2, · · · ,m. A fixed large number of B sets of m matrices
are chosen from original m matrices with replacement (i.e, matrix which is previously chosen can again
appear). These B sets of m matrices are called Bootstrap samples. Making B large enough allows one to
throw out highly inconsistent matrices. One can set a threshold value of the Consistency Index for the
matrices to pass the consistency criteria.

Let n be the number of sets of m matrices out of the generated B sets of Bootstrap samples which
satisfy the consistency criteria. For each of these n generated sets of matrices, the priority vector V can
then be estimated by any group aggregation estimation method established in AHP. In this article, we
consider the logarithmic least squares technique in which the priority vector V is estimated by the vector
v which minimizes

m∑
k=1

∑
i<j

(lnakij − lnvi + lnvj)
2 (4.1)

for each such generated matrix with acceptable CR. The associated set of normal equations can be written
as

m∑
k=1

t∑
j=1

lnakij = mt lnvi −m
t∑

j=1

lnvj ; i = 1, · · · , t. (4.2)

A solution to lnvi is obtained by solving (4.2) with an additive degree of freedom. There is no unique
solution to the system in (4.2). A particular solution is obtained by setting

∑
ln vj = 0. An unnormalised

solution to the logarithmic least squares problem in (4.1) can then be explicitly written as

vi = exp

 1

mt

m∑
k=1

t∑
j=1

ln akij

 = (

m∏
k=1

t∏
j=1

akij)
1/mt. (4.3)



This means that the estimate vi of the priority of Ti is found by taking the geometric mean of the aij over
all k = 1, 2, · · · ,m and j = 1, 2, · · · , t. If desired, these vis can be normalized. However, for the purpose
of establishing a statistically significant rank order of alternatives the normalization is not necessary. Let
the over-all estimate of the priority vector be given by v̄ = (v̄1, v̄2, · · · , v̄t) in which

v̄i =

∑n
α=1 viα
n

; i = 1, 2, · · · , t. (4.4)

Whether differences between the estimated priorities v̄i in (4.4) are statistically significant can now be
determined. This is very much needed when estimated priorities are very close. In this case, we propose
rank-based statistical procedures to check the significance in the difference between estimated priorities of
the alternatives and to establish their statistically most significant rank order. These rank-based methods
do not require any assumptions on statistical distribution of pairwise comparison entries.

Let Riα denote the overall rank of viα; i = 1, · · · , t, α = 1, · · · , n among all N = tn entries. Use of
these overall ranks enable one to test whether the difference in ranks of any two alternatives is statistically
significant or not. Evaluate the average ranks of the alternatives as

R̄i. =

∑n
α=1Riα
n

; i = 1, 2, · · · , t. (4.5)

The belief that priorities of the alternatives are same can be formulated as the statistical null hypothesis
H0 : V1 = · · · = Vt. As the first step, the alternative hypothesis of interest in this situation may be
formulated as H1

a : V1, · · · , Vt not all equal. The test statistic for testing this hypothesis is known as
Kruskal-Wallis (1952) statistic and is given as

H∗1 =

t∑
i=1

(1− 1

t
)

[
R̄i. − N+1

2√
(N − n)(N + 1)/12n

]2
. (4.6)

Under H0, H
∗
1 has an asymptotic χ2 distribution with (t−1) degrees of freedom. When the Kruskal-Wallis

statistic rejects H0 implying that not all V1, · · · , Vt are equal, pairwise multiple comparisons may be carried
out to locate the source of significance. The following procedure was first suggested by Dunn (1964) for
this purpose and is discussed in Hettmansperger (1984) in details. Note that there are t(t− 1)/2 pairwise
comparisons in all. Based on the difference in the average ranks of the alternatives, let us define

Dij =
1√
N

(R̄i. − R̄j.); i, j = 1, 2, · · · , t. (4.7)

The expected value and variance of Dij will be denoted by E(Dij) and V ar(Dij) respectively. Under
the null hypothesis H0 of equal priorities, the E(Dij) is zero and V ar(Dij) is calculated as (V ar(R̄i.) +
V ar(R̄j.) − 2Cov(R̄i., R̄j.))/N in which V ar and Cov stand for the variance and covariance respectively.
Simple calculations show that V ar(Dij) reduces to (N + 1)/6n since V ar(R̄i.) = (N −n)(N + 1)/12n and
Cov(R̄i., R̄j.) = −(N + 1)/12. V ar(Dij) has an asymptotic (as n increases) value of t/6. For a prescribed
overall error rate of α, the pairwise comparison error rate is α′ = 2α/t(t − 1). Vi and Vj will be declared
significantly different at overall error rate α if

|Dij | ≥ zα′/2

√
t

6
, (4.8)

in which Dij is as in (4.7). These pairwise multiple comparisons, however, do not detect any increasing (or
decreasing) order of priorities. In some situations, it is more appropriate to tailor a test which establishes
statistically most significant order of priorities. Following Hettmansperger (1984), we provide a rank-based
testing procedure for this purpose. Suppose we wish to test the null hypothesis H0 versus the alternative
hypothesis of a specific order of (say) H2

a : V1 ≥ · · · ≥ Vt with at least one strict inequality. The statistic
assessing the degree of agreement between the observed average ranks R̄i.; i = 1, · · · , t and the ordering i
as specified in H2

a is given by

L =
1√
N

t∑
i=1

(i− t+ 1

2
)(R̄i. −

N + 1

2
). (4.9)



Let us explain the computation of L with the help of the following example. Suppose H2
a : V4 ≥ V1 ≥ V2 ≥

V3. Then L = 1√
N

[
(4− 5

2 )(R̄4. − N+1
2 ) + (3− 5

2 )(R̄1.− N+1
2 ) + (2− 5

2 )(R̄2. − N+1
2 ) + (1− 5

2 )(R̄3. − N+1
2 )
]
.

Large values of L support the alternative hypothesis H2
a . The expected value and variance of L will be

denoted by E(L) and V ar(L) respectively. Under the null hypothesis H0, L has an asymptotic normal
distribution with E(L) = 0 and

V ar(L) = (t2 − 1)(nt+ 1)/144n (4.10)

(see page 191 of Hettmansperger(1984)). Therefore, to test H0 against H2
a , the test statistic could be used

as

H∗2 =
L√

V ar(L)
. (4.11)

Reject H0 against H2
a if H∗2 ≥ zα for an approximate α-level test where zα is the upper α percentile of the

standard normal distribution.

For a set of t alternatives, the alternative hypothesis H2
a could be formed in t! ways. The test statistic

value H∗2 is calculated for each of these t! ways. One possible way of comparing these t! order of
alternatives is to compare their p-values (probability that H∗2 statistic exceeds its computed value). The
most significant order of the alternatives is the one with smallest p-value. According to the fact that largest
calculated value of the test statistic yield the smallest p-value, first step to establish the ordering in the
alternatives would be to pick up that particular order for which the calculated value of test statistic is the
largest. Against that selected order, reject the null hypothesis of equality of priorities among alternatives
if H∗2 ≥ zα.

We illustrate procedures proposed in this article providing a numerical example in the next section.

5 Data/Model Analysis

Based on the Bootstrap resampling procedure, n = 1000 replications of pairwise comparison matrices of
acceptable consistency were generated. These generated matrices have maximum inconsistency percentage
of 10%. For each generated matrix, the priority vector V is estimated by the logarithmic least squares
regression technique as discussed in section 2 yielding estimate vectors vα;α = 1, · · · , 1000 as well as the
overall estimate vector v̄ to be (0.284, 0.206, 0.221, 0.289)T . We now apply the methodologies suggested in
section 4.

First the null hypothesis of equal priorities H0 : V1 = V2 = V3 = V4 is tested against the alternative hy-
pothesis H1

a that they are not all equal. Computations using (4.5) yield R̄1. = 2200.4, R̄2. = 1821.7, R̄3. =
1789.4 and R̄4. = 2190.5 Here t = 4, n = 1000, N = 4000. The computed value of test statistic H∗1 as
specified in (4.6) is 114.42. The critical value of this statistic at α as small as .01 is 11.34. Clearly the null
hypothesis that all alternatives have same priorities is rejected at 1% level of significance.

Now we employ the pairwise multiple comparisons to detect which alternatives differ in their priorities.
As discussed in section 4, the criterion that Vi and Vj will be declared significantly different is given
by (4.8). If we take an overall error rate of α = .01 then α′ = .002, zα′/2 = 3.08 and we would use
|R̄i.− R̄j.| ≥ 50.29 to be the criterion to say that Vi and Vj are significantly different. Use of this criterion
yields that alternatives T1 and T4 do not have significant difference in their priorities, R̄1.− R̄4. being 9.9.
Similarly alternatives T2 and T3 have non-significant difference because R̄2. − R̄3. equals 32.3. All other
alternatives have pairwise significant difference in priorities. This indicates that in the estimated priority
vector v̄ = (0.284, 0.206, 0.221, 0.289)T , the difference between 0.289 and 0.284 as well as the difference
between 0.221 and 0.206 are not statistically significant while all other differences are.

Finally, we wish to establish the most statistically significant order of priorities of the alternatives.
Since the priority difference between alternatives T1 and T4 as well as the priority difference between
alternatives T2 and T3 are not statistically significant, we compute the value of test statistic H∗2 as given
in (4.11) for four probable order of preference V4 ≥ V1 ≥ V2 ≥ V3, V4 ≥ V1 ≥ V3 ≥ V2, V1 ≥ V4 ≥ V2 ≥ V3
and V1 ≥ V4 ≥ V3 ≥ V2. V ar(L) as appears in expression (4.10) is calculated to be 0.4168. The statistic
L in (4.9) measuring the degree of assessment between the observed average ranks and the ranking of
the alternatives specified by the afore-mentioned four probable order are 12.51, 11.99, 12.66 and 12.15



respectively. These, in turn, yield the test statistic value of H∗2 to be 19.38, 18.58, 19.61 and 18.82
respectively. 19.61 being largest, the most significant order of preference is V1 ≥ V4 ≥ V2 ≥ V3 with at
least one strict inequality. Since 19.61 is larger than the critical value zα of 2.33 at 1% level of significance,
the null hypothesis H0 that all alternatives have same priority is rejected against the most significant order
of preference of H2

a : V1 ≥ V4 ≥ V2 ≥ V3 at this significance level. Finally, the over-all estimate vector is
modified to be (0.2865, 0.2135, 0.2135, 0.2865)T in which v1 = v4 > v2 = v3. This relation is in compliance
with the most significant order of preference established above.

6 Limitations

The methodology developed in the article involves a computationally involved technology of resampling
method. In order to get a pre-fixed number of sets of pairwise comparison matrices with acceptable CR,
one might need to run the computer program little longer in some situations. For that purpose, it is better
to start the resampling method with initial m matrices which are not highly inconsistent. Some Measures
(like returning the matrices to the experts asking them to reconsider the entrees of the matrix to improve
consistency somewhat) can be used for improving the consistencies of the initial matrices.

7 Conclusions

In this article, we proposed a statistical methodology in AHP in which the entries of the pairwise com-
parison matrices are considered to be random variables. A statistical resampling method is applied to
generate pairwise comparison matrices. This resampling method yields desired large number of pairwise
comparison matrices whose consistencies can be controlled. Finally, rank-based statistical methodologies
are applied in order to test whether differences in the estimated priorities are statistically significant and
to establish the most statistically significant priority order of the alternatives.
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