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ABSTRACT 

During decision making for classification it is desirable to predict an outcome when not 

all of the evidence is available. Consider medical diagnosis. If a doctor is trying to 

determine the cause of a patient’s ailment, often they are presented with a subset of 

potential evidences for or against a particular diagnosis. As the doctor runs more tests and 

the patients symptoms evolve, the doctor becomes more confident in their evaluation. It 

is critical that the decision maker be as confident in their decision as possible with as few 

evidences as are available. The goal of this paper is to improve the ability to predict the 

final decision given only a subset of the total information. By exploiting 

interdependencies and probabilistic relationships between the evidences, the confidence 

of prediction of a decision making tool can be improved through machine learning. Given 

some complete set of evidences, the Analytical Hierarchy Process (AHP) provides a 

method of weighting the nodes in a decision structure to synthesize a decision that 

reflects the opinion of a subject matter expert (SME). By truncating the comparison 

matrices produced for the AHP, weights can be generated for decision structures that are 

lacking inputs, known as deficient decision structures. This paper proposes a method of 

sigmoid node supplementation to the standard decision structure. Using machine learning 

the parameters of these sigmoid nodes can be optimized so that the output of deficient 

decision structures can be vastly improved for prediction of the output of the complete 

decision structure. This method preserves the original weights derived through the AHP 

and thus the relative importance of evidences is maintained after learning is undergone. 

An example will illustrate the improved confidence in prediction that can be achieved by 

adjusting the sensitivity of the supplemented sigmoid nodes. 
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1. Introduction 

The AHP is useful for making decisions when all of the information is available. 

Compensating for lacking information and probabilistic relationships within the 

evidences (cues) is one of its challenges. 
[1]

 Given some complete decision structure, 

meaning all of the cues are available, the AHP provides a method of weight generation 

for each node. 
[2]

 When this decision making structure is deficient, meaning that it is 

missing some of the cues, then the same comparison matrices generated for the complete 

decision structure can be truncated to produce weights that maintain the relative 

importance of the available cues. These weights are consistent in their measurement of 

relative importance but do not consider the sensitivity of the known cues. Sensitivity 

appears in the form of relationships between the known and unknown cues as well as the 

sensitivity of the known cues to the output. For instance, if the value of an unknown cue 

is highly correlated with a known one, then the known cue is considered more sensitive 

compared to other known cues with no correlation. To compensate scenarios like the one 



International Symposium on the 
Analytic Hierarchy Process 

2 Hong Kong, HK. 
July 13 – July 15, 2018 

 

described above, this paper proposes a method of sigmoid node supplementation before 

every input to a weight node. These sigmoid nodes will allow the structure to learn the 

sensitivity of each input and adjust the parameters accordingly.  

 

2. Objective 
The objective of this paper is to propose a method to improve the ability of a decision 

making tool to predict the optimal decision when only some of the inputs are known. By 

complimenting the AHP with machine learning and sigmoid node supplementation, 

relationships and dependencies within the cues can be exploited to greatly improve the 

accuracy of a deficient decision making structure to predict the output of the complete 

decision structure.  

 

3. Methodology  
The implementation of the method follows four steps: 

1 Definition of the information state space: a list of all combinations of possible 

inputs. 

2 Equations of the sigmoid functions and supplementation into the decision 

structures 

3 Mathematical description of the decision structure 

4 Sigmoid parameter optimization through machine learning 

 

These steps are described in more detail in the following subsections.  

3.1 Information State Space 
Given a complete input matrix 𝑥 ∈ ℝ𝐾𝑥𝑀, where K is the number of criteria and M is the 

number of cues in the largest criteria, each of the inputs, {𝑥𝑖𝑗| 𝑖 = 1, 2, . . . , 𝐾 , 𝑗 =

1, 2, … ,𝑀} are determined to be either independent or dependent. 
[1]

  

 

The information state space is the space of all possible availability states of the cues. For 

N independent cues 𝑥𝑖𝑗 ∈ 𝑥 there are 2𝑁 information states.  

 

3.2 Sigmoid Functions 

Each of the weight nodes are initialized to have a sigmoid function applied to their input. 

The equation of a general sigmoid function is: 

𝑆(𝑎, 𝑏, 𝑥 ) =
1

1 + 𝑒−𝑎(𝑥−𝑏)
  (1) 

Where:  

- 𝑥 is the input to the sigmoid function 

- 𝑎 is the shape parameter 

- 𝑏 is the shift parameter 

- 𝑆 is the sigmoid output 

 

Each of the sigmoid functions is initialized to be a standard sigmoid function (SSF). A 

SSF has parameter values 𝑎 = 4.5 𝑎𝑛𝑑 𝑏 = 0.5. These parameter values are used for 

initialization since the corresponding sigmoid function closely mimics the identity 

function. As a consequence, the traditional decision structure produces very similar 

output to the SSF supplemented one. This is desirable because it implies that through SSF 
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supplementation the output of the new decision structure still represents the cue and 

criteria importance derived through the AHP. The following is an example sigmoid 

supplemented decision structure. 

   

 
Figure 1: Sigmoid Supplemented Decision Structure 

 

3.3 Mathematical Description of a Decision Structure 
Based on the method of output calculation and the variable definitions described by the 

authors, 
[1] 

the output of a sigmoid decision structure can be calculated by the following 

formula.
 

𝑇𝑦(𝜃𝑦, 𝜑𝑦, 𝛿𝑦, 𝜏𝑦, 𝑥) =  ∑ [𝜃𝑦𝑖𝑆 (𝜑𝑦𝑖 , 𝛿𝑦𝑖 , 𝜏𝑦𝑖(𝜔𝑦𝑖 , 𝜌𝑦𝑖 , 𝛽𝑦𝑖 , 𝑥))] 

𝑖  ≤ 𝐾

  (2) 

Where: 

- 𝑦 ∈ [0, 2𝑁 − 1] is the information state 

- 𝜃𝑦 and 𝜔𝑦 are the weight matrices 

- S is a sigmoid function 

- 𝜑𝑦 and 𝜌𝑦 are sigmoid shape matrices 

- 𝛿𝑦 and 𝛽𝑦 are sigmoid shift matrices 

-  𝜏𝑦𝑖(𝜔𝑦𝑖 , 𝜌𝑦𝑖 , 𝛽𝑦𝑖 , 𝑥) =   ∑ (𝜔𝑦𝑖𝑗
𝑆 (𝜌𝑦𝑖𝑗, 𝛽𝑦𝑖𝑗, 𝑥𝑖𝑗))𝑗 ≤ 𝑀  is the input to the 

sigmoid node for criteria 𝑖 ∈ {1, . . . , 𝐾} 
 

3.4 Learning Process 
Learning is performed on the sigmoid shape and shift variables simultaneously. To 

perform gradient descent, explicit parameter partial derivatives need to be calculated with 

respect to some cost function. The partial derivative of the sigmoid function with respect 

to each of its parameters will be useful in the next calculations. These partials are shown 

here: 

𝜕𝑆(𝑎, 𝑏, 𝑐)

𝜕𝑎
=  [𝑆(𝑎, 𝑏, 𝑐)]2(𝑐 − 𝑏)𝑒−𝑎(𝑐−𝑏) 

 (3) 

𝜕𝑆(𝑎, 𝑏, 𝑐)

𝜕𝑏
= − 

𝜕𝑆(𝑎, 𝑏, 𝑐)

𝜕𝑐
=  [𝑆(𝑎, 𝑏, 𝑐)]2𝑎𝑒−𝑎(𝑐−𝑏)  (4) 
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The partial derivatives with respect to the output 𝑇 of each of the shape and shift 

parameters for the criteria layer are: 

𝜕𝑇𝑦

𝜕𝜑𝑦𝑖
(𝜃𝑦, 𝜑𝑦, 𝛿𝑦, 𝜏𝑦, 𝑥) =  𝜃𝑦𝑖

𝜕𝑆(𝜑𝑦𝑖
, 𝛿𝑦𝑖

, 𝜏𝑦𝑖
(𝜔𝑦𝑖 , 𝜌𝑦𝑖 , 𝛽𝑦𝑖 , 𝑥))

𝜕𝜑𝑦𝑖
   

 (5) 

𝜕𝑇𝑦

𝜕𝛿𝑦𝑖
(𝜃𝑦, 𝜑𝑦, 𝛿𝑦, 𝜏𝑦, 𝑥) =  𝜃𝑦𝑖

𝜕𝑆(𝜑𝑦𝑖, 𝛿𝑦𝑖 , 𝜏𝑦𝑖(𝜔𝑦𝑖 , 𝜌𝑦𝑖 , 𝛽𝑦𝑖 , 𝑥))

𝜕𝛿𝑦𝑖
   

 (6) 

 

The partial derivatives of the output of the decision structure with respect to the shape 

and shift parameters of the cue layer are: 

 

𝜕𝑇𝑦

𝜕𝜌𝑦𝑖𝑗
(𝜃𝑦 , 𝜑𝑦, 𝛿𝑦, 𝜏𝑦) = (

𝜕𝜏𝑦𝑖
𝜕𝜌𝑦𝑖𝑗

(𝜔𝑦𝑖 , 𝜌𝑦𝑖 , 𝛽𝑦𝑖 , 𝑥))
𝜕𝑇𝑦

𝜕𝜏𝑦𝑖
(𝜃𝑦 , 𝜑𝑦, 𝛿𝑦 , 𝜏𝑦)  (7) 

𝜕𝑇𝑦

𝜕𝛽𝑦𝑖𝑗
(𝜃𝑦 , 𝜑𝑦, 𝛿𝑦, 𝜏𝑦) = (

𝜕𝜏𝑦𝑖
𝜕𝛽𝑦𝑖𝑗

(𝜔𝑦𝑖 , 𝜌𝑦𝑖 , 𝛽𝑦𝑖 , 𝑥))
𝜕𝑇𝑦

𝜕𝜏𝑦𝑖
(𝜃𝑦 , 𝜑𝑦, 𝛿𝑦, 𝜏𝑦)  (8) 

 

To find the partial derivatives with respect to a cost function, apply the chain rule of 

differentiation, first taking the partial of the cost with respect to 𝑇𝑦 and then of 𝑇𝑦 with 

respect to the desired parameter. 

The parameters are then updated iteratively with some batch size to shift in the opposite 

direction of their cost partial derivative multiplied by some positive learning rate. This is 

represented though a gradient shift of the following form: 

 

[𝜑𝑦, 𝛿𝑦, 𝛽𝑦, 𝜌𝑦]
𝑡+1 ←  𝑡
←     [𝜑𝑦, 𝛿𝑦, 𝛽𝑦 , 𝜌𝑦] − [𝛼𝜑, 𝛼𝛿 , 𝛼𝛽 , 𝛼𝜌] ∙  ∇𝐶𝜑𝑦,𝛿𝑦,𝛽𝑦,𝜌𝑦  (9) 

 

Where:  

- C is a cost function dependent on input cases x 

- t is the iteration step 

- 𝛼𝐴 is the learning rate for parameter A 

 

4. Experiment 

An experiment in which the values of each of the independent cues are generated by 

uniform probability distributions on realistic intervals is conducted. The values of the 

dependent cues are calculated as a product of the independent ones on which they rely. 

The details of this experiment are described in an earlier paper by the authors.
 [1]

 The 

complete information state decision structure and all of its truncations are initialized to 

include SSF nodes. A uniform training data set was created using the SSF supplemented 

complete decision structure as the reference output. 

The process of learning the parameters of each of the sigmoid nodes is performed. This is 

applied to every information state 𝑦 ∈ {0, 2𝑁 − 2}. The following chart depicts the 
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improvement for each individual information state and is organized by the number of 

available cues. The red bars represent the untrained SSF supplemented decision structure 

prediction accuracies for each of the information states. The green bars are the improved 

accuracies of the trained decision structures on the same set of input data  

 

Figure 2: Confidence in Accurate Prediction 

In each information state the prediction accuracy is increased and particularly in lower 

information states large improvement is seen. The improvement seen is a product of 

learning the probability of outcome based on the available input data. This includes the 

recognition of any probabilistic relationship between cues or to the output. The following 

table is a summary of the improvement that is shown in the above bar graph. 

 

Table 1: Accurate Prediction Confidence Improvement: 

   Average Best Worst STD 

Improvement 17.7 % 42.5 % 0.7 % 9.62 % 

 

The table above shows that every information state can be at least slightly improved and 

that the information states that are the least confident can be vastly improved. The best 

case exhibits an improvement of as much as 42.5% confidence of accurate prediction. 

5. Limitations 
The greatest limitation of this model is the availability of training data. If no training data 

is available then it is hard to train the model. For this implementation, the training data 

set was 1500 inputs cases (500 batches of 3 cases). Another limitation is the manual 

selection of hyper parameter values (learning rates and batch size for gradient descent). 

To improve the method, it might be beneficial to use a version of gradient descent in 

which the learning rates and other hyper parameters are automatically updated to improve 

results.  
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6. Conclusions 

The AHP is a useful tool for synthesizing a decision based on the opinions of a subject 

matter expert. Supplementation of SSF nodes into the standard decision structure 

preserves the decisions that would have been made before the supplementation. The goal 

is to be able to predict the decision of a complete SSF supplemented decision structure 

with weights generated through the AHP when not all of the information is available. 

This paper has shown that by applying the AHP to derive the weights and using machine 

learning to adjust the parameters of the sigmoid nodes in the deficient decision structures, 

the predictive capabilities can be vastly improved. This method is useful for all states of 

information availability and shows promise for use in practice.  
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