
Introduction
The number of comparisons required to fill the pairwise
comparison (PC) matrix used in the scientific study of
preferences and in particular in the AHP can become tedious
as the number of alternatives considered becomes larger
(grows with O(N2)).

Priority vectors which are obtained from normalizing
principal eigenvectors of PC matrices can be computed even
if some PC entries are missing, under some conditions.

This study aims to determine whether or not some PC
matrices entries can be systematically omitted in the
elicitation process of the AHP without significantly
distorting the final solution. It is expected that these
omissions will be guided by a number of simple heuristics
that will have been verified empirically by way of numerical
simulations. The simulations compare priority vectors
obtained from complete matrices with those obtained by
omitting some PC entries (see figure 1).

The measure used to evaluate distances between priority
vectors is the angle based on the cosine similarity of vectors
which is defined as :

d(v,v’) = =�ߠ cos-1 ( )

Core concepts and computations
 The space of priority vectors obtained from filling PC

matrices using scales such as Saaty’s linear, Ma-Zeng’s
inverse linear, Hamalainen’s balanced, etc., is discrete.

 All random vectors w=(w1, …, wn) used to fill a PC
matrix by computing A (ai,j = round [wi / wj]), which
result in the same priority vector (e.g. by increments of 0.001)

are included within a cone around the resulting priority
vector.

 Therefore, the use of discrete scales entails a limit
of precision for priority vectors which can be
expressed in angles using the cosine similarity
measure (see figure 2).

 Solution vector p’ obtained with PC matrices omitting a
number of entries is an approximation of the solution
vector p obtained with complete matrices (see figure 3):

 If the approximation error measured as d(p,p’) is
smaller than the limit of precision, p’ can be
considered just as accurate.
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Preliminary Results
 Preliminary tests (as of this submission deadline – April 18, 2016) have

shown :

 That priority vectors obtained from matrices of sizes 5 X 5
to 15 X 15 have a limit of precision angle of approximately
5 degrees (95th percentile)

 That overall solutions with models of 6 to 8 alternatives
and 4 to 8 criteria with incomplete matrices using a simple
heuristic focusing on 2N - 3 entries (see figures 4a, 4b)
provide result vectors within less of 5 degrees from
solutions obtained with complete matrices

 Mixed Integer Nonlinear Programming models have shown that
the minimum numbers of entries required to approximate (within
5 degrees) the complete solutions of size N can be much less
than 2N - 3 (as small as N + 2 in some cases)

 Further tests are being conducted :

 With other preference scales (Inverse Linear, Balanced, ..)

 To determine and evaluate other heuristics that could
provide approximation with a lesser number of entries

 To determine the extent to which approximations are
affected by inconsistency

 To confirm the conditions under which the heuristics can be
applied

Conclusions
Preliminary results point towards the affirmation that the
number of entries required to approximate overall solutions
within limits of precision grow with O(N) (see table 1).

Further testing will help specify the conditions under which
the heuristics could provide a significant reduction of effort
in the elicitation of pairwise comparisons.
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Montreal, Quebec, Canada
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– Figure 4b –
Distribution of angle distance (In

degrees) from a run a 10 000 trials

– Figure 4a –
Rank order the alternatives, then proceed

by comparing the following pairs :
 Those including the top alternative
 Those consisting of contiguous

alternatives

1 2 3 4 5 6 7 8

1 a(1,2) a(1,3) a(1,4) a(1,5) a(1,6) a(1,7) a(1,8)

2 a(2,3)

3 a(3,4)

4 a(4,5)

5 a(5,6)

6 a(6,7)

7 a(7,8)

8

N
N*(N-1)

2
2*N - 3

% entries

saved

5 10 7 30%

6 15 9 40%

7 21 11 48%

8 28 13 54%

9 36 15 58%

10 45 17 62%

11 55 19 65%

12 66 21 68%

13 78 23 71%

14 91 25 73%

15 105 27 74%

– Table 1 –
Number of PC matrix entries that can

be omitted

– Figure 2 –
Illustration of the cone of precision for

a priority vector of dimension 3.
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– Figure 1 –
Computation of priority vector

v computed by principal

eigenvector method

v’ computed by principal

eigenvector method

– Figure 3 –
V is the N X M matrix concatenating the
M priority vectors (one for each criteria).
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V’ is obtained from V by
omitting some entries for
criteria ݆∈ {1. .݉ }


