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FOREWORD 

THE AR? CAPTURES ORDER SO ESSENTIAL IN MAKING DECISIONS 

Thomas L. Saaty 
University of Pittsburgh 

Many decision problems are hierarchic in nature in that they have goals, 
criteria, subcriteria and so on down to the alternatives of choice. A hierarchic 
structure by the natural stratification of its levels gives one a good start in 
the quest for order. Generally, the objective of decision theory is to order the 
alternatives at the lowest level of the hierarchy. A weak form of this order is 
to "totally order" or line up the alternatives sequentially according to overall 
preference on multiple criteria. A strong version is to map the alternatives of 
which there are m > 0 to the interval [0,1]", to represent order on a numerical 
scale according to importance or something similar (called rank or ranking). The 
components representing the priorities of the alternatives belong to the same 
ratio scale and sum to unity. This is what one does in the Analytic Hierarchy 
Process (AHP). 

Decision problems are unstructured and need to be structured to derive an 
optimum ranking. For most problems, the hierarchy and relations within it are 
only partly known to a decision maker. We need a mathematical formalism to 
assist him to develop rank from incomplete information. The structure is at 
least as important as the ranking procedure used to derive the order within the 
structure. We already know some general structural principles for organizing a 
decision problem as a hierarchy. We also know of ways to structure a decision 
problem from the general to the particular partly learned through the pairwise 
comparison procedures we use in the AR?, or as a discrete system of components 
with feedback including dependence within and between the components. Finally 
we have studied decision problems in neural network structures on manifolds with 
dependence and feedback. We can use the formal theory of the AHP in all three 
of these structures. 

There are two legitimate concerns of decision theory. The first is how to 
derive an optimum rank for the alternatives of a multicriteria decision with 
respect to each criterion and also an optimum overall rank with respect to all 
the criteria, and the second is how to interpret rank preservation and reversal 
in closed and in open sequential decision structures. I shall confine my 
discussion to decision problems represented by hierarchic structures, sometimes 
viewed as a very particular case of discrete feedback systems. These two cases 
involve the use of positive reciprocal matrix operators whereas the third case 
of a manifold extends these ideas to positive operators of the Fredholm type with 
reciprocal kernels. My purpose is to give an overview and open up for inspection 
the philosophy underlying decision making with the AR?. 

Paired Comparisons and the Derived Order 

We need to make a distinction between the mathematics of decision problems 
and that of physics and engineering around which much of our understanding of the 
physical world has been developed. In the physical world, topology and in 
particular metric spaces, are useful to study limiting operations and the 
concepts of nearness and good approximation. But when we rank elements in a 
hierarchy it is not enough to consider the metric idea of closeness, we also need 
a best way to derive rank that embodies the numerical preferences or dominance 
relations expressed in the judgments. It is possible to introduce different 
metrics (e.g. least squares, logarithmic least squares) on a space and obtain 
approximations for rank but the orders may be different, with the top 
alternatives and their ranks depending on the metric chosen. Topological 
closeness need not signify order closeness. In ordering three elements, the 
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first and the third may be judged closer by a metric than the first and the 
second which lies between them. Thus the question is, if we use an infinite 
process to obtain a limiting rank, what sort of metric do we need to generate a 
unique order from judgments? In decision making we must generate a unique rank 
for the alternatives according to a special metric with which the idea of 
closeness in n-dimensional space .carries with it preservation of rank. Here 
small perturbations in judgments must lead to small changes in priority and 
little or no change in rank as appropriate. 

A hierarchy of three levels: goal, criteria, alternatives is what 
multicriteria people often talk about. Most decisions go beyond a three level 
hierarchy though it is neither the simplest nor the most complex type of decision 
structure. Let us look at the order generated in the simplest decision 
structure, a two level hierarchy consisting of a criterion, and several 
alternatives to be ordered on that criterion or attribute. In the AHP we obtain 
this order as the principal eigenvector of a paired comparisons matrix of 
judgments. In these paired comparisons, dominance is expressed in the form of 
ratios and their reciprocals, with respect to an attribute. Here one examines 
two alternatives and asks : on the whole or on the average are the two equal in 
possessing the attribute? If not, take the one which possesses the attribute 
less than the other and determine how many times more the larger alternatives 
possess the attribute than the smaller one. The latter then serves as the unit 
of the comparison and the other is assigned a real number as an absolute multiple 
of the unit, often approximated by an integer. If we anticipate deriving a ratio 
scale from the judgment with values wi for alternative i and wi for alternative 
j, then the ratio is (wi/wj)/1 and its reciprocal 1/(w") in the transpose 
position. Thus we derive a ratio scale from an absolute scale of numbers. 

We assume that in structuring a decision problem, alternatives are grouped 
in homogeneous clusters so that one essentially compares one alternative with 
another that is a small perturbation of it. If an element is much larger than 
the rest, it is removed from that cluster and placed in another cluster of 
elements similar to it. By sharing an element, measurement on the two clusters 
can be unified. The reason for this clustering is that people can only deal with 
comparisons of homogeneous objects and cannot compare widely disparate elements. 
Clustering assists judgment elicitation and improves the accuracy of the final 
answer. 

Returning to our matrix of paired comparisons, we see that the elements 
being compared must be sufficiently close to be able to relate them with 
accuracy. The need to cope with human perceptual limitations is the main reason 
why the fundamental scale of the AHP is confined to the absolute numbers 1, 2, 
..., 9 which correspond closely to a verbal scale that also spans our ability to 
make distinctions. The scale is only an indicator of order of magnitude and not 
a rule to be followed to the letter. If one has precise decimals, one can use 
them instead. Note that this process of translating from words to numbers does 
not come out of previous theories, it is simply assumed first and afterward 
tested in a large number of cases. In practice it works well. This very scale 
contains as subsets the geometric progressions 1, 2, 22, 23 and 1, 3, 32, thought 
by some to be preferred to the 1-9 scale. It is difficult to assign larger values 
from whatever scale because people are not capable of making widely disparate 
comparisons. If someone can use a wider scale with accuracy, let them. To deal 
with far out alternatives we need to use clustering and should get the same 
result without loss of generality. Too narrow a scale would be limiting and 
inefficient, and too wide a scale would sacrifice precision. Our goal is to try 
to be both valid and consistent. 

Let us make a useful observation about attaching numbers to stimuli. 
Though we look for ways to represent our mental response to stimuli, we are not 
always able to respond to them with the same intensity they actually occur in the 
real world, as measured by instruments on the few scales we have. It is how we 
interpret the world based on information processed by us that matters indecision 

X 



C) 
0 
C) 
C) 
C) 

0 
0 Some people have improvised logarithmic or power laws for our response on 
C) entire ranges of phenomena. In the AHP because our approach is constructive, 
0 rather than descriptive, we can deal with them in contiguous homogeneous ranges 

measured in relative terms and do not need a law that applies uniformly (and none 
C) does) across the full range. Sometimes measurements are meaningless. If you 
C) have any doubt about it you can ask what in your mind is the difference between 

C one trillion and one trillion one million kilometers. We each have our own ranges 
of significance of numbers for each kind and range of measurement. Note that the 

C) significance of the million is lost in the very large and unfathomable trillion. 
0 In doing paired comparisons, we note that the idea of consistency is 
0 important. One can force the judgments to be consistent but may cause a loss in 
0 accuracy. When judgments are consistent all methods people have suggested to 

0 
rank the alternatives: taking the average over the rows, multiplying the 
elements and taking their nth root, using the method of least squares, lead to 

C) the same answer and there is no reason to prefer one over the others. 
t4f' 

0 We note that dominance in this case is transitive. In other words if A is 
0 preferred 3 times over B, and if A is preferred 5 times over C, and if C is then 
C) preferred 3/5 times over B we still have from A to C to B that A is preferred 3 

times to B. In other words when there is consistency, A is preferred to B the 
C) same whether it is directly compared with it or indirectly through C. In 
C) general, we have A" — nk-2A, and it is enough to use the matrix A to describe all 

C) 
the relations between the elements. As I said, it does not matter what method 
one uses to derive the scale because all yield the same answer. t-

0 
0 The question now is, what if one does not feel sure about taking a minimum 

of judgments but must make all the comparisons, in other words, what if the 
0 consistency condition aij ajk — ask is no longer satisfied? Such an outcome is 
C) likely to be the case particularly when one is dealing with intangible criteria. 

0 Now in the consistent case the solution (which coincides with that obtained 
0 by all methods of optimization) is derived from: 

0 Aw . — nw. 
where n is the order of A. A perturbation theorem assures us that we need to 

0 solve the corresponding problem Aw — Im..w, where 1. is the largest or principal 
0 eigenvalue of A, known to always exist when A is positive. The solution of this 

problem is not a matter of choice, it is always there with its ranking. It is 
0 thrust upon us without making any new assumptions. 

making. The fact that there are very large measurements of distance and weight 
on our instruments or estimated mathematically, does not mean that we can in fact 
sense and attach a meaning to different readings or values. Measurements are 
representations of stimuli which we need to interpret just as we do stimuli we 
receive directly like light and sound. Some stimuli are intense and some are 
weak. We must interpret them for meaning when they go beyond our thresholds of 
perception. 

0 
C) 

The next idea is to show that the principal eigenvector is the way to 
capture dominance in the judgments when the matrix is inconsistent. With 

C) inconsistency, it is no longer true that A" — nk-lA and we must consider all 
C) possible relations of dominance which means that we must account for dominance 

along paths whose lengths are 1, 2, 3,... in A, A2, A2, .... respectively. We 
C) can prove that the mean dominance from all these matrices converges to the 
C) principal eigenvector of A known to always belong to a ratio scale. In this 

0 
manner the eigenvector captures dominance. 

0 The theorem of Perron which says that if A is a positive linear 

0 transformation on Rm, then there is an x. > 0 such that for all x 0, Ana 
converges in direction to x0 so that 
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According to Birkhoff [1, 2], this theorem is a special case of the 
contraction mapping theorem which says that if A is a contraction on a complete 
metric space (X,D) mapping X into X, i.e., for some k<1, D(Ax, Ay) s kD(x, y) for 
all x,y E X, then there exists xceX such that ex - x0, for all xeX. 

Birkhoff observed that there is a metric D on x in which all positive 
linear transformations acting on the set of rays X in 0.1. satisfy the contraction 
condition because convergence in rays is also convergence in direction. The 
unique metric D, invented by Hilbert for non-Euclidean geometries specialized to 
Km+ that makes a positive (or even a nonnegative) matrix into a contraction that 
satisfies the theorem, is given by 

maxi(xifyi) 
D(x,y) - log 

mani(xi/yi) 

where xi and yi are the i th coordinates of the vectors x and y. It is a metric 
on rays because D(ax,by) D(x,y) for a,b > 0 and thus it is order preserving. 
According to Kohlberg and Pratt [2], a method that needs to preserve order must 
converge along rays and thus cannot use an arbitrary metric. 

The AMP also has a nice index based on the structural parameter 
that captures all the inconsistencies in a single index It can be used 
to decide whether the judgments are sufficiently consistent to justify deriving 
a valid ranking, or whether the decision should be made at all because of loose 
information. Sometimes one hears it asked: Why use paired comparisons and not 
some other form of comparisons to express the judgments? A reply to that is that 
mathematically pairwise comparisons is the only way we have to derive the 
relative priorities in the form of the principal eigenvector that captures the 
dominance in the judgments. 

Extending Rank Order to a Hierarchy 

It has been shown [3] that the principal eigenvector represents the 
relative dominance or rank of each element in the paired comparison matrix A. 
This dominance is captured by the principal eigenvector. When the judgments are 
consistent each power of A is a constant multiple of A and hence it is sufficient 
to normalize the row sums of A to derive the principal eigenvector which gives 
the relative priorities or ranks of the elements. When A is inconsistent, one 
must consider the mean of corresponding components obtained as the normalized row 
sums of every power of A. the result is again the principal eigenvector of A. 

Now let us turn to the question of deriving an optimum overall rank in a 
multiattribute process. Decisions are sometimes one shot affairs and sometimes 
sequential and we need to understand both. A hierarchy is a decomposition into 
levels and elements in levels of a complex dominance situation. In a closed 
hierarchy, the one shot affair, all the elements of the structure are assumed to 
be included at the start. The elements in each level of the hierarchy are 
mutually independent with respect to shared attributes in the immediately 
preceding level on which they depend and with respect to which they are ranked 
according to dominance, but they are dependent with respect to relative 
measurement. They are also assumed to be independent of the elements in lower 
levels of the hierarchy. Thus the rank of the elements with respect to each 
element in an adjacent upper level is obtained as the principal eigenvector of 
their paired comparison matrix. Two alternatives are said to be mutually 
independent if the intensity with which an alternative possesses an attribute is 
not influenced by the existence of the other alternative and conversely. 
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The overall ranks of the alternatives in a decision are derived through a 
generalization of the principal eigenvector of a single pairwise comparison 
matrix. We refer to the method of deriving these ranks as the Hierarchic 
Composition Principle. Here we construct a general matrix to represent the 
relative dominance of the elements in the entire hierarchy. It incorporates all 
the separate eigenvectors derived throughout the hierarchy. Such a matrix is 
known as a supermatrix A. The supermatrix has zero submatrices in those 
positions corresponding to non-interacting levels and an identity subMatrix in 
the last row and column positions corresponding to the alternatives because that 
level is an absorbing state. Two levela*are said to interact if one is dependent 
on the other or conversely. 

C) In graph theoretic terms, a hierarchy is a directed graph from the goal to 
C) the bottom level of alternatives. The levels of the hierarchy are the vertices 

C) of a path that connects the top goal to the level of alternatives. In addition, 
each of these vertices is itself a strongly connected subgraph. The directed 

C) graph gives rise to the supermatrix which represents the dominance-reachability 
C) of any vertex from any other vertex of the hierarchy. As in the simpler paired 

1 0  
comparisons representation of dominance, the limiting power of this reachability 
matrix yields the overall dominance of each element in the hierarchy including 

' 0 the lowest level alternatives. 

1 0 

0 
C) 
C) Theorem (Hierarchic Composition Principle for closed systems) : Given a closed 
0 hierarchy H and its corresponding supermatrix A, the ranks of the alternatives 

0 
at the bottom level of H with respect to the goal are uniquely givenby:the (n,l) 
entry of lim Ac. 

eNLJ I 

When the hierarchy is closed, the limit of the supermatrix exists because 
it is column stochastic, irreducible,find imprimitive. In fact this, limit is 
equal to the matrix raised to a power, one less than its order. We have: 

When the hierarchy is open allowing for sequentially adding elements_but 
0 particularly adding alternatives there are two cases. The first is the normative 
C) case. Here in the supermatrix each alternative is assigned a value 1 under the 

C) 
appropriate intensity for each criterion and a value of zero under the remaining 
intensities. The second is the descriptive case where in the supermatrix the o priorities of the alternatives are adjusted with respect to an ideal 

C) alternative. 

Corollary (Hierarchic Composition Principle for Open Systems) : Givena hierarchy 
H with an open level of alternatives and supermatrix A of order n, the ranks of 
the alternatives are uniquely given by the (n,l) entry of

This entire procedure gives an optimum final order. Any other metric 
procedure which derives the optimum order from consistent judgment matrices must 
also use the Hierarchic composition Principle for synthesis through weighting by 
the criteria and adding to capture order dominance. Otherwise, not only it may 
not yield an optimum order, but also could contradict the ranking obtained by 
hierarchic composition. 

For those who may be concerned about the linearity of certain aspects of 
hierarchic order, we note that in the end the outcome of a decision is a 
multilinear form, a covariant tensor, that can have a highly nonlinear 
interpretation. 

Open and Closed Structures — Rank Preservation and Reversal 

What happens to the rank of alternatives if new alternatives are added or 
old ones deleted? This subject we discuss in detail in a separate paper included 
in these proceedings. We close by offering a diagram of four similar procedures 
for using the AHP to deal with single shot and sequential decisions. we refer to 



a decision problem as closed or open depending on whether all the alternatives 
are known in advance, or new ones are added as for example in student admissions, 
where decisions are made sequentially. 

Single and Sequential Ordering of Alternatives By The 
Analytic Hierarchy Process 

1) Closed Structure 
One shot affair 
Criteria weights 
depend on alternatives 

Open Structure (with and 
without new criteria) 
(sequential ordering) 
If a new alternative is 
introduced answer question, 
does it change the weights 
of some criterion? If no 
preserve rank, with normative or 
descriptive, otherwise do not 

2) Normative (Absolute 
Measurement) Rank 
independent of which 
alternatives are 
considered first. 

Descriptive - Rank depends 
on what alternatives one 
has in hand. In paired 
comparisons all 
alternatives ever 
considered are relevant. 
(Assumes that after 
exhaustive study one has 
determined the essential 
or most relevant set to 
work with) 

3) Preserve Old Rank 
(Absolute Measurement) 
Independent of Alter-
natives. 

Figure 1 

4) Derive New Order as in 
the one shot affair. 
Criteria weights 
depend on entire set 
of alternatives. 

The normative approach has no way to include the effect of new or old 
alternatives on criteria weights. Each of these methods is needed for some 
problem. Rank can change if new alternatives introduce new criteria or change 
the weights of old criteria. 

In descriptive absolute measurement anew alternative is compared with some 
other alternative, perhaps the highest ranking one with respect to a criterion 
and placed in its proper order. Any other alternative continues to be compared 
with the original ideal in the same manner. 
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