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Abstract  

To achieve a decision with which the group is satisfied, the group members must accept the 
judgments, and ultimately the priorities.  This requires that (a) the judgments be homogeneous, and (b) 
the priorities of the individual group members be compatible with the group priorities.  There are three 
levels in which the homogeneity of group preference needs to be considered: (1) for a single paired 
comparison (monogeneity), (2) for an entire matrix of paired comparisons (multigeneity), and (3) for a 
hierarchy or network (omnigeneity).  In this paper we study monogeneity and the impact it has on group 
priorities. 
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1. Introduction 

In all facets of life groups of people get together to make decisions.  The group 
members may or may not be in agreement about some issues and that is reflected in how 
homogeneous the group is in its thinking.  In the AHP groups make decisions by 
building a hierarchy together and providing judgments expressed on a 1 to 9 discrete 
scale having the reciprocal property.  Condon et al. [1] mentioned that there are four 
different ways in which groups estimate weights in the AHP: “…consensus, vote or 
compromise, geometric mean of the individual judgments, and weighted arithmetic 
mean.”  The first three deal with judgments of individuals while the last deals with the 
priorities derived from the judgments.   

To achieve a decision with which the group is satisfied, the judgments, and 
ultimately the priorities, must be accepted by the group members.  This requires that (a) 
the judgments be homogeneous, and (b) the priorities of the individual group members 
be compatible with the group priorities. 

There are three levels in which the homogeneity of group preference needs to be 
considered: (1) for a single paired comparison (monogeneity), (2) for an entire matrix of 
paired comparisons (multigeneity), and (3) for a hierarchy or network (omnigeneity).  
Monogeneity relates to the dispersion of the judgments around their geometric mean.  
The geometric mean of group judgments is the mathematical equivalent of consensus if 
all the members are considered equal.  Otherwise one would use the weighted geometric 
mean.  Aczel and Saaty [2] showed that the only mathematically valid way to synthesize 
reciprocal judgments preserving the reciprocal condition is the geometric mean.  If the 
group judgments for a single paired comparison are too dispersed, i.e., they are not 
close to their geometric mean, the resulting geometric mean may not be used as the 
representative judgment for the group.   
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Multigeneity relates to the compatibility index of the priority vectors.  The closeness 

of two priority vectors  and can be tested through their 
compatibility index [3] given by 
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that derived from the group judgments.  A homogeneous group should have compatible 
individuals.  It is clear that homogeneity at the paired comparisons level implies 
compatibility at the group level, but the converse is not always true.  At the hierarchy or 
network level, it appears that it is more meaningful to speak of compatibility than of 
homogeneity.  The main thrust of this paper is to study monogeneity.    

Dispersion in judgments leads to violations of Pareto Optimality at both the pairwise 
comparison level and/or the entire matrix from which priorities are derived.  
Ramanathan and Ganesh [4] explored two methods of combining judgments in 
hierarchies but they violated the Pareto Optimality Principle for pairwise comparisons  
[5], and hence, they incorrectly concluded that the geometric mean violates Pareto 
Optimality.  Pareto Optimality at the pairwise level is not sufficient to ensure Pareto 
Optimality at the priority level.  Fundamentally, Pareto Optimality means that if all 
individuals prefer A to B then so should the group.  The group may be homogeneous in 
some paired comparisons and heterogeneous in others thus violating Pareto Optimality.  
The degree of violation of Pareto Optimality can be measured by computing 
compatibility along the rows, which yields a vector of compatibility values.  What does 
one do when a group is not homogeneous in all its comparisons?  Lack of homogeneity 
(heterogeneity) on some issues may lead to breaking up the group into smaller 
homogeneous groups.  How should one separate the group into homogeneous 
subgroups?  Since homogeneity relates to dispersion around the geometric mean, and 
dispersion itself involves uncertainties, how much of the dispersion is innate and how 
much is noise that when filtered one can speak of true homogeneity?  In other words, 
how does one separate random considerations from committed beliefs?   

Dispersion at the single paired comparison level affects the priorities obtained by 
each group member individually and could lead to violating Pareto Optimality.  Should 
one combine or synthesize the priorities of the individuals to obtain the group priority or 
should one combine their judgments?   

Here we develop a way to test monogeneity, i.e., how homogeneous the judgments of 
the members of a group are for each judgment they give in response to paired 
comparisons.  This is done by deriving a measure of the dispersion of the judgments 
based on the geometric mean.  Computing the dispersion around the geometric mean 
requires a multiplicative approach rather than the usual additive expected value used to 
calculate moments around the arithmetic mean.  This leads to a new multiplicative or 
geometric expected value used to define the concept of geometric dispersion.  The 
geometric dispersion of a finite set of values is given by the geometric mean of the 
ratios of the values to their geometric mean, if the ratio is greater than 1, or the 
reciprocal, if the ratio is less than or equal to 1.  This measure of variability or 
dispersion of the judgments around the geometric mean allows us to (a) determine if the 



geometric mean of the judgments of a group can be used as the synthesized group 
judgment, (b) if the geometric mean cannot be used, divide the group into subgroups 
according to their geometric dispersion, and (c) measure the variability of the priorities 
corresponding to the matrix of judgments synthesized for the group. 

In general, unless a group decides through consensus which judgments to assign in 
response to a paired comparison, the individual members may give different judgments.  
We need to find if the dispersion of this set of judgments is a normal occurrence in the 
group behavior.  To do this, we compare the dispersion of the group with the dispersion 
of a group providing random responses to the paired comparison.  Thus, we assume that 
an individual’s pairwise comparison judgments about homogeneous elements is 
considered random, and expressed on a discrete 1/9, …, 1/2, 1, 2,…, 9 scale of 
seventeen equally likely values.  A sample consists of a set of values selected at random 
from the set of seventeen values, one for each member of the group.  It is the dispersion 
of this sample of numbers around its geometric mean that concerns us.  This dispersion 
can be considered a random variable with a distribution.  Because treating the 
judgments as discrete variables becomes an intractable computational problem as the 
group size increases, we assume that judgments belong to a continuous random 
distribution.  For example, if there are five people each choosing one of 17 numbers in 
the scale 1/9, …,1, …, 9, there are 175 = 1,419,857 possible combinations of which 
20,417 are different.  Thus, the dispersion of each sample from its geometric mean has a 
large number of values for which one needs to determine the frequency and thus the 
probability distribution.  To deal with this complexity, we use the continuous 
generalization instead.  This allows us to fit probability distributions to the geometric 
dispersion for groups of arbitrary size.  Once we have the continuous distribution of the 
geometric dispersion, the parameters that characterize this distribution are a function of 
the number of individuals n in the group.     

To use the geometric mean to synthesize a set of judgments given by several 
individuals in response to a single pairwise comparison, as the representative judgment 
for the entire group, the dispersion of the set of judgments from the geometric mean 
must be within some prescribed bounds.  To determine these bounds, we use the 
probability distribution of the sample geometric dispersion mentioned above.  We can 
then find how likely the observed value of the sample geometric dispersion is. This is 
done by computing the cumulative probability below the observed value of the sample 
dispersion in the theoretical distribution of the dispersion.  If it is small then the 
observed value is less likely to be random, and we can then infer that the geometric 
dispersion of the group is “small” and the judgments can be considered homogeneous or 
α-cohesive at that specified α level.  On the other hand, if the dispersion is 
unacceptable, then we could divide the group of individuals into subgroups representing 
similarity in judgment.     

The remainder of the paper is structured as follows.  In section 2 we give a summary 
of the geometric expected value concept and its generalization to the continuous case 
that leads to the concept of product integral.  In section 3 we define the geometric 
dispersion of a positive random variable and apply it to the judgments of groups.  In 
section 4 we approximate the distribution of the group geometric dispersion.  In section 
5 we sketch how groups could be divided into subgroups if the geometric dispersion is 



large, and in section 6 we show the impact of the dispersion of a group’s judgments on 
the priorities associated with their judgments.  
 
2. Generalization of the Geometric Mean to the Continuous Case 

Let X be a random variable.  Given a sample from this random variable 1( ,..., )nx x x=% , 

the sample geometric mean is given by 1/
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In the continuous case, because [ ]P X x 0= =  for all x, we need to use intervals rather 
than points, and hence, we obtain:  
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Equation (2) is known as the product integral [6].  If X is defined in the interval (s,t], we 
have 
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3. The Geometric Dispersion of a Positive Random Variable 

 Using the geometric expected value, we define a measure of dispersion similar to 
the standard deviation.  Let Gσ  be the geometric dispersion of a positive random 
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possible now to write G
Gx σμ ω= , where the variable ω  has a geometric mean equal to 1 

and a geometric dispersion equal to 
1
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Let ,  1, 2,...,kX k = n  be the independent identically distributed random variables 
associated with the judgments.  Let { ,  1, 2,...,kX k n= } be continuous random variables 
distributed according to a reciprocal uniform 1

9[ ,9]RU , i.e., the variable is a lnk kY = X



uniform random variable defined in the interval [ ln 9, ln 9]− .  The probability density 

function (pdf) of is given bykY [ ln 9,ln 9]
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Let  be the order statistics corresponding to the sample {[1: ] [ : ]( ,..., )n n nx x ,  1, 2,...,kx k n= }, 
i.e., [ : ] [ : ]h n k nx x≤  if h k≤ . Let  be a value for which 1n [ : ]k n Gx x≤  for 11,2,...,k n= .  We have  

1

[ : ] 1
[1: ] [ : ] [ : ]

1

21ln ( ,..., ) ln ln ln
n

k n G
G n n n G n n

k G

x n
s x x x x

n x n=

⎡ ⎤= = −⎣ ⎦∑  

and hence, we obtain  

( )
1

1

2

1 [1: ] [ : ] [ :( ,..., ) ( ,..., )
n

nG
G n G n n n G n ns x x s x x x x= = ]

n

. 
For a group consisting of n individuals, the distribution of  is given by  1( ,..., )GS X X
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Thus, the density function is given by: 

( ) 
1 0

( ) ( | ) ( 1)
n n t

k k t
GD GD t k t n

t k
f s f s t S

−
+

+
= =

= −∑ ∑  (5) 
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 There are closed form expressions for the density function of the geometric 
dispersion for a group consisting of three or less individuals, but for groups larger than 
three, it is cumbersome and not much precision is gained from it.  Instead, we 
approximate them using simulation.  
 
 
 



 
4. Approximations of the Geometric Dispersion of Group Judgments 

We computed the geometric dispersion of randomly generated samples of size 
20,000 under the assumption that the judgments are distributed according to a 
continuous reciprocal uniform distribution 1

9[ ,9]RU .  We did this for groups consisting 
of 4, 5,…, 15, 20, 25, 30, 35, 40, 45, and 50 individuals.  We found that as the group 
size increases, the geometric dispersion tends to become gamma distributed.  The 
parameters of these gamma distributions with location parameter equal to 1 are given in 
Table 1.  To extend these models to groups of any size, we fit regression models to the 
parameters of the gamma distributions.  Regression models of the shape (α) and the 
scale (β) parameters versus n appear to be surprisingly robust: 

α(shape) = -3.48226 + 1.40829*n   (R-squared = 99.9741) 
β(scale) = 0.897865 + 0.504361*n   (R-squared = 99.981) 

In addition, the average and variance of the geometric dispersion can also be estimated 
from the parameters of these models:  

mean = exp(1.03505 – 1.01298/n)  (R-squared = 99.8463) 
variance = 7.23275*n-1.0664   (R-squared = 99.9706) 

Note that as n tends to infinity, the average geometric dispersion tends to 2.81524 (99% 
C.I.  (2.79228,2.8384)) and the variance tends to zero (99% C.I. (1.44E-9, 2.31E-9)).   

We now have the basis for a statistical test to decide if the dispersion of a group can 
be considered larger than usual, i.e., that the probability of obtaining the value of the 
sample geometric dispersion of the group is greater than a pre-specified significance 
level (e.g., 5 percent) in the distribution of the group geometric dispersion.  For 
example, for a group of size 6, whose judgments on a given issue are equal to [2 9, 1, 2], 
the geometric dispersion of the group is equal to 1.9052169.  The average geometric 
dispersion is estimated to be equal to exp(1.03505 – 1.01298/6) = 2.378.  Taking the 
usual significance level of 5 percent, we observe that 

.  Thus, the p-value corresponding to the sample 
geometric dispersion indicates that it seems rare to observe values of the geometric 
dispersion smaller than the sample geometric dispersion, and hence, the geometric 
dispersion of the group is not unusually large, which in turn implies that the geometric 
mean can be used as the representative preference judgment for the entire group. 

[ (6) 1.9052169] 0.0376176 0.05GP S < = <

 
5. Group Member Classification by the Geometric Dispersion 

Let us assume that { },  1, 2,...,kx k = n  is a group of judgments and let { }[ : ] ,  1, 2,...,k nx k n=  
be their order statistics.  If   1 1 1[ ( ,..., )] [ ( ,..., ) ( ,..., )]GD G n G n G nF s x x P S X X s x x α≡ ≤ <  (where α is 
usually taken to be equal to 0.05) then the geometric mean can be used as a 
representative of the group judgment.  On the other hand, if 

1 1 1[ ( ,..., )] [ ( ,..., ) ( ,..., )]GD G n G n G nF s x x P S X X s x x α≡ ≤ >  then the group needs to discuss the 
paired comparisons further in an attempt to reach consensus.  To determine which 
members of a group disagree the most and hence make the geometric dispersion large, 
we find the p-values corresponding to the geometric dispersions of the groups of 
judgments given by: { } ,…,[1: ] [2: ],  n nx x { }[1: ] [2: ] [ : ], , ,n n k nx x xK ,…,{ }[1: ] [2: ] [ : ], , ,n n n nx x xK . 
 



Let , k = 2, …, n.  We give without proof because of space 
limitations the following results. 

[1: ] [ : ]( ) ( ,..., )G G n ks k s x x= n

n

 
Lemma 1:  is a non-decreasing function of k, i.e., . [1: ] [ : ]( ) ( ,..., )G G n ks k s x x= ( ) ( 1)G Gs k s k≥ −

Theorem 1: Given a set of judgments { }[ : ] ,  1, 2,...,k nx k = n

}
 with corresponding ordered 

geometric dispersions { ( ),  1, 2,...,Gs k k n= , if for any k, [ ( ) ( )]G GP S k s k α≤ ≤  then 
[ ( 1) ( 1)]G GP S k s k α− ≤ − ≤ . 

Definition: A group of judgments { },  1, 2,...,kx k = n  is said to be α-cohesive if 
[ ( ) ( )]G GP S n s n α≤ ≤ . 

Definition: A member of a group of α-cohesive judgments is said to be a liaison of the 
group if the group is not α-cohesive after the elimination of the corresponding judgment 
from the set of judgments. 
 
Table 1 

Gamma Distribution Parameters ( 1γ = ) 1 (( , , ) ( )
( )

xGamma x e
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)α β γβα β γ γ
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n Shape Scale

4 2.80051 1.27561
5 4.03976 1.76548
6 5.40204 2.27523
7 6.55616 2.69154
8 7.67909 3.1141
9 9.29459 3.68852
10 10.4217 4.08574
11 11.8255 4.59905
12 13.0628 5.04772
13 14.4586 5.55345
14 16.0157 6.10734
15 17.4963 6.65405
20 24.2381 9.02191
25 31.4048 11.6058
30 38.5573 14.1547
35 45.6409 16.6991
40 53.1646 19.3885
45 60.1011 21.8493
50 67.254 24.429

α β

 
 
The Liaison Theorem: Given a group of n α-cohesive judgments, a liaison does not 
exist if and only if all subgroups of cardinality (n-1) are α-cohesive. 

The existence of a liaison means that we may be able to divide a group into two 
subgroups whose preferences differ, and for which the geometric mean cannot be used 
as the representative group judgment.  This is the subject of further study. 
 
6. Geometric Dispersion and Priority Variation 

To study the relationship that exists between the geometric dispersion of a group and 
the dispersion of the corresponding eigenvectors, we find the range of variability of 
each component of the eigenvector for given sets of group judgments.  This is done by 
first finding the distribution of the eigenvector components for random reciprocal 



matrices whose entries are distributed according to reciprocal uniform distributions 
RU[ , .     ]ij ijl u

 
Theorem 2: For a random reciprocal matrix ( )ijX x=  with entries distributed according 
to a reciprocal uniform distribution, ~ [ ,ij ij ij ]x RU l u , the components of the random 
variable  corresponding to the principal right eigenvector are distributed 

according to a beta, 
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Let ij
ij ij ijx wσμ=  where ij ij ijl uμ = is the geometric mean and ijσ  is the geometric 

dispersion of ~ [ ,ij ij ij ]x RU l u .   By definition, 1/ji ijμ μ=  and ji ijσ σ= .  Thus, we 
have .  Let us assume that the reciprocal matrix of geometric means is 
consistent, i.e., 

1/ji ijw = w

ij jk ikμ μ μ= .  Then the principal right (pr-) eigenvector of the matrix 
 is given by the Hadamard product of the pr-eigenvector of the matrix ( )( ij

ij ij ijx wσμ= ) ijμ , 

wμ , and the pr-eigenvector of the matrix ( .  The entries of this matrix are random 
reciprocal uniform variables 

)ij
ijwσ

[ ,ij ij ij ijRU l u ]μ μ  whose geometric dispersion is given by 

( )1/ 4

ij iju l .  Since the geometric dispersion of the variables ijx  and that of the variables 
ij

ijwσ  is the same, because ij
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ij ij iju lσ = .  Thus, bounding the 
dispersion of the entries of the matrix (  bounds the dispersion of the entries of the 
matrix .   
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Consider a group of five people who provide the judgments given in the following 
matrix: 

1 (2,3,4,5,6) (1/2,2,1,1/3,4) (3,4,1/2,2,8)
1 (1,2,3,4,5) (5,4,3,2,1)

1 (1/4,1/3,1,2,5)
1

⎛ ⎞
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⎜ ⎟
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⎝ ⎠

 

 
The geometric dispersion of each group and their corresponding p-values (see Table 

2) that the judgments (1,3), (1,4) and (3,4) have large geometric dispersion.  This leads 
to large dispersion on the values of the eigenvector components (See Table 3) and a 
violation of Pareto Optimality.  Reducing the dispersion of the judgments as in the 
matrix below, for example, 

1 (2,3,4,5,6) (2,2,1,1,2) (3,4,3,2,8)
1 (1,2,3,4,5) (5,4,3,2,1)

1 (1,2,1,2,5)
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 



leads to less dispersed eigenvectors that satisfy Pareto Optimality (See Table 4). 
 
Table 2.   
Geometric Dispersions and p-values 

GD 1 1.399306 2.194046 2.586241
1.399306 1 1.63026 1.63026
2.194046 1.63026 1 2.62424
2.586241 1.63026 2.62424 1

p-value 0 0.005 0.157 0.3
0 0.025 0.025

0 0.315
0  

 
Table 3. 
 Individual Eigenvectors and Eigenvector of the Geometric Mean 

P1 P2 P3 P4 P5 GM
w1 0.288293 0.460725 0.267140199 0.351129 0.581191 0.41676
w2 0.301287 0.274057 0.283579312 0.281388 0.207615 0.266142
w3 0.201647 0.116421 0.135419348 0.273203 0.136396 0.178548
w4 0.208772 0.148798 0.313861141 0.09428 0.074798 0.138551  

 
 

Table 4  
Individual Eigenvectors that satisfy Pareto Optimality 

P1 P2 P3 P4 P5 GM
w1 0.401242 0.473463 0.439457696 0.438378 0.535109 0.471061
w2 0.295662 0.268317 0.269969347 0.265162 0.227089 0.253814
w3 0.187044 0.172147 0.17688459 0.184266 0.161707 0.176787
w4 0.116052 0.086073 0.113688366 0.112194 0.076095 0.098339  

 
 
7. Conclusions 

In this paper we put forth a framework to study group decision-making in the context 
of the AHP.  A principal component of this framework is the study of the homogeneity 
of judgments provided by the group.  We developed a new measure of the dispersion of 
a set of judgments from a group for a single paired comparison, and illustrated the 
impact that this dispersion has on the group priorities.  A subject of future research is 
the study of the relationship between dispersions on the individual paired comparisons 
in the entire matrix, the consistency of judgments, the compatibility of the priority 
vectors and the measurement of the violation of Pareto Optimality.  
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