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ABSTRACT 
 
 
 
The standard method to estimate the values for the weights of criteria or decision alternatives in the 
analytic hierarchy process (AHP) is to make pairwise comparisons of the objects by using Saaty’s 
comparison scale, where the comparison ratios are formed with numbers 1/9,1/8,…,8,9. The values of 
the weights are the normalized components of the principal eigenvector associated to the largest 
eigenvalue of the comparison matrix. In practice, the comparisons are inconsistent to some extent, and 
therefore the eigenvalue method to calculate the weights becomes problematic. Saaty has studied the 
effect of inconsistency on the eigenvector solution, and he gives an advice not to use the method if the 
consistency exceeds some measure. More precisely, the so-called consistency ratio should not exceed 
the value 0.10 (Saaty[2]). 
 
Gass and Rapcsák [1] present  an application  of the singular value decomposition (SVD) for the 
comparison matrix in order to obtain better estimates for the weights. They prove that the rank one left 
and right singular vectors, which are connected to the largest singular value, yield theoretically well-
justified weights. In an inconsistent case this approach seems to be more reliable than the usual 
eigenvector method. Unfortunately, there is a drawback in the use of  SVD to the basic comparison 
matrix. The comparisons are done in ratio scale, but  SVD is a linear transformation that spans in a 
linear way the distances between the alternatives (the distances between the columns or between the 
rows of the comparison matrix). 
 
The main features of the decomposition analysis (DA) are the following. 
 
Let R be a positive reciprocal AHP-comparison matrix with size n×n. By taking logarithm of the 
elements of R we get a skew symmetric matrix L=log(R) with the signed distances between the 
alternatives as its elements. In this matrix the comparison ratios have been transformed linear. Singular 
value decomposition of L is a product of three matrices, L=USV’ where S is diagonal matrix of 

singular values, S=diag )0,...,0,,,...,,( 11 kk δδδδ for some 2k ≤ n. U and V are matrices of 

the eigenvectors connected to the eigenvalues of the matrices LL’ and L’L. Here 1δ  is the largest 

eigenvalue of LL’ (there are two equal eigenvalues 1δ ), and kδ  is the k:th eigenvalue of LL’ (there 

are two equal eigenvalues kδ ). The smallest eigenvalues are zeros. If R is a consistent matrix, then 
k=1, and in inconsistent cases there may be more than one nonzero pairs of eigenvalues. The first 
column of U represents the rows (the first dimension), and the first column of V represents the columns 
(the second dimension) of L. The first and the second columns of U and V generate the first component 
L1  of the matrix L. The second component L2 is formed by the third and fourth columns of U and V, 
and so on. If there are k positive eigenvalues kδδ ,...,1  of LL’, then there are k decompositions 
L1,…,Lk corresponding to these eigenvalues. The result is L=L1+ … +Lk where the matrices Lj are 
skew symmetric. If we write Rj=exp(Lj), we get R=R1.* … .*Rk, where .* means elementwise product 
of matrices. The matrices Rj are positive reciprocal matrices. 
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 In the decomposition L=L1+ …. +Lk component Lj explains 100× ∑ ij δδ / percent of the total sum 

of squares of the elements of matrix L (total sum of the squared distances). If  R is consistent, then the 
first component explains 100%, and in an inconsistent case the first component L1 generally explains 
the greatest part, more than 90%, of the sum of squares. Nature of the inconsistency connected to the 
first component can be visualized by plotting a figure where the compared alternatives are presented in 
the (U,V)-plane. The coordinates in the first dimension can be found in the first column of U, and the 
coordinates in the second dimension establish the first column of  V. In the consistent case the points 
settle on a straight line, but in an inconsistent case the points form a nonlinear figure telling about the 
nature of the inconsistency. If  the inconsistency has a complicated nature, then the second component 
L2 explains a considerable part, too, and the corresponding plot in the (U,V)-plane reveals background 
of the inconsistency. There are also natural interpretations for the first and second dimensions in the 
(U,V)-plane. The interpretations can be found by observing correlations between the coordinates and 
the Euclidean distances of the rows or the Euclidean distances of the columns in matrix L.  
 
The estimates for the AHP-weights of the alternatives are based on the first component of the 
decomposition. By using the coordinates in the (U,V)-plane, a matrix of signed distances between the 
columns and another matrix of signed distances between the rows can be formed. The sum of these two 
matrices is a compromise of the comparisons between the comparisons in the column direction and  in 
the row direction. This skew symmetric matrix, say A ,  must be normalized  by  requiring  that its 
trace(AA’) is equal to the trace of matrix L1L1’. By exponentiation, a positive reciprocal consistent 
comparison matrix is found, and the weights can be calculated by using the standard eigenvalue 
method. The advantage of this procedure is that there is no  need to apply the eigenvalue method to an 
inconsistent matrix. 
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