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Abstract: Sekitani and Yamaki introduced two new concepts of self-evaluation 
value and non-self-evaluation value into AHP and showed that the eigenvalue 
method can be formulated as some mathematical programming problems with 
the ratios of the self-evaluation value to the non-self-evaluation value. This 
study develops a new discrepancy-minimization problem with the ratios of the 
self-evaluation value to the non-self-evaluation value and their reciprocals. We 
show that its optimal solution is identical to the principal eigenvectors of the 
pairwise comparison matrix. We compare the analytical properties of the pro-
posed optimization model with that of Harker method for the case of AHP 
with incomplete information. 

1 Introduction 

The eigenvalue method (EM), that is to find a principal eigenvector of a pairwise comparison matrix, 
is widely used in AHP. It has been suggested that Frobenius' theorems play an important role to 
guarantee the existence and the uniqueness of the weight vector which is provided by EM. 

Recently Sekitani and Yamaki (Sekitani and Yamaki,1999) focused on Frobenius' min-max theorem 
from the viewpoint of mathematical programming and then introduced two new concepts of self-
evaluation value and non-self-evaluation value into AHP. The eh self-evaluation value is the eh 
component w, of the weight vector in and the i th non-self-evaluation value is (a,w — w,)/(n —1), where 
a, is the ith row vector of the pairwise comparison matrix of order n. They showed that Frobenius' 
min-max theorem is interpreted as the following two optimization models P1 and P2: 

(Pi) max min a w — w1 anti,— w„ 
w>o (n — 1)wi • • (n — 1)tan

(P2) min max w>o 
aiw — tot anw — 
(n — 1)wi. • • • (n — 1)wn

The model P1 minimizes the largest ratio of w, to (a,w —  — 1) and the model P2 maximizes the 
least ratio of w, to (a,w — w,)/(n — 1). Sekitani and Yamaki also proved that the optimal solutions 
of both P1 and P2 are identical and equivalent to a principal eigenvector of the pairwise comparison 
matrix. 

In this study, in order to combine the two optimization models P1 and P2, we develop a new 
discrepancy-minimization problem that evaluates the ratios of w, to (a,w — w,)/(n — 1) and their 
reciprocals. 

AHP assumes that all pairs of alternatives/objects should be compared. Therefore, AHP with 
incomplete pairwise comparisons is an exceptional case that needs a special method, e.g., Harker 
method (Harker,1987). In this study, we apply the above three models (P1 P2 and the combined one) 
to the case of AHP with incomplete information as a natural extension of  models. We show that 
these three models can deal with AHP with incomplete pairwise comparisons as well as that with all 
pairwise comparisons. 

From the graph-theoretical argument we discuss the analytical properties of these three optimiza-
tion models through the comparisons with Harker method. 

*The author was partially supported by Grand-in-Aid for Scientific Research of the Ministry of Education, Science, 
Sports and Culture, Grant No. 11780328 and Shizuoka University fund for engineering research. 
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2 Fundamental Theorems and Generalization of Key Concepts 

AHP with all pairwise comparisons provides the pairwise comparison matrix A whose (i, j) entry is the 
pairwise comparison value au of the i th alternative/object and the i th alternative/object. Because the 
pairwise comparison value au is defined positive, the comparison matrix A is positive and irreducible. 
Therefore the following well-known theorem guarantees that the weight vector by EM is unique, and 
that it is positive. 

Theorem 1 (Perron-Frobenius' Theorem (Talcayarna,1985)) Suppose that A is an in-educible 
nonnegative matrix. Then there are an eigenvalue A and the corresponding eigenvector w satisfying 
the following two conditions: 

(1) Aw = AW, A > 0, w > 0 and A? jai for every eigenvalue a of the matrix A. 

(2) A is a single root of the characteristic equation of A. 

Furthermore Frobenius' min-max theorem states that the two mathematical programming problems 
(stated below) have the same optimal solution and that it is identical to the weight vector of EM. 

Theorem 2 (Frobenius' min-max Theorem (Furuya,1957)) Suppose that A is a nonnegative 
matrix of order n, and that Ann„, is the principal eigenvalue of A. Then for every n-dimensional 
positive vector to, 

; aiw anw w a„w 
nun —, • • • — < Amax < max { — . 

tau 

Furthermore, if the matrix A is irreducible, 

anw max min 
I 

—
run,

, . . —
anw = Aman = min max —

c4 w
w>o Wn w>0 Wn

(1) 

(2) 

where the two equalities in (2) hold for every positive eigenvector w corresponding to the principal 
eigenvalue Amax. 

Sekitani and Yamalci proposed the model-based AHP with all pairwise comparisons of n alternatives 
as follows: the model-based AHP supposes that every alternative evaluates itself, and that it gives 
itself a positive real number. Let wc be the positive real number given to the i th alternative by itself. 
The value tvc of the i th alternative is called the i th self-evaluation value. The value auwi represents 
the evaluation value of the e h alternative from the viewpoint of the j th alternative when the j th

self-evaluation value is tai. It is called external evaluation of i by Takahashi (Takahashi,1999). Since 
the number of the alternatives is n, the number of the evaluation values of the i th alternative from the 
viewpoint of others is n — 1. Averaging auwi over j except i, we obtain (E1 1 autaf)/(n — 1) This we 
can call the "averaging principle." Because au = 1, we call (acw—wc)/ (n-1) the i th non-self-evaluation 
value. 

For AHP with the incomplete pairwise comparisons, let au be the pairwise comparison value when 
the pair of the alternatives i and j is evaluated by a decision maker, and let au be 0 when the pair 
of the alternatives i and j is not evaluated. Let acc = 1 for i = 1, ,n and au = 1/a1 for au > 0. 
Then the nonnegative matrix A = (a11) is well defined. We call A = (au) an incomplete pairwise 
comparison matrix. We then define K.c. as the number of the positive off-diagonal element au for 
i = 1, , n. 

As in the case of complete information, wc is the i th self-evaluation value and (acw—wi)/Kc is called 
the i th non-self-evaluation value. This definition of non-self-evaluation value is a natural extension 
of the complete information case, because in this case we have Kc = n — 1 for i = 1, ,n. Hence 
the definitions of the self-evaluation value and the non-self-evaluation value in AHP with incomplete 
information include those in AHP with complete information. 

3 Optimization Models for the Incomplete Information Case 

This section discusses the incomplete information case in the model-based AHP which is based on the 
self-evaluation and the non-self-evaluation. The complete information case is dealt as a special case 
of the incomplete information case. 
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By introducing the generalized definitions of the self-evaluation value wi and the non-self evaluation 
value (aiw — w1)1 Ki into Pi and. P2, we formulate the following discrepancy minimization problems 
with the ratios of the self-evaluation value to the non-self-evaluation value: 

{a iw — wi anw — wn 1 
(Qi) max min w>o Kiwi ' • • • ' Kwn f 

min max { al w — w1 anw — wr, 1 
(Q2) w>o Kiwi ' • • • ' Kw o J 

Pi /F2 is identical to Qi /Q2 with the complete information, that is K1 = n — 1 for i = 1, ..., n. For 
the matrix A, we define the i th row vector di = (ai — e1)/K1 for i = 1, . . . , N , where ei is the eh unit 
row vector. The matrix of di is then defined as: 

A=[ 
a 

(3) 

Lemma 3 Suppose that an incomplete pairwtse comparison matrix A is irreducible. Then A is also 
nonnegative and irreducible. 

Proof: Since ha = (aii — 1)/K1 = 0 and du = /Kr, A is nonnegative and irreducible. LI 

Lemma 4 Suppose that an incomplete pairwise comparison matrix A is irreducible. Then the prin-
cipal eigenvalue of A is a single root of its characteristic equation and there exists a positive principal 
eigenvector of A. 

Proof: It is directly followed from Lemma 3 and Theorem 1. 0 

The following two theorems state the relationship between a principal eigenvector of A and an 
optimal solution of Qi or Q2. 

Theorem 5 Suppose that A is nonnegative and irreducible. Let v be any positive n-dimensional 
vector other than a principal eigenveitor of A, then 

. art; anv art, anti)
mini — < Amax < max { , vi v„ vn 

(4) 

where Amax is the principal eigenvalue of A. 

Proof: We denote the transpose operator for a matrix or a vector by T. Let Amn be the principal 
eigenvalue of A. Then, the principal eigenValue of AT is Amax and there exists a positive principal 
vector u of AT corresponding to Am. since AT is also nonnegative and irreducible. 

We will consider the two assumptions aiv/vi < Am for every i = 1, ...,n and aiv/vi > Amax for 
every i = 1, ..., n, and lead to contradiction under either assumption. 

First suppose that aiv/vi < Amax for every i = 1, ..., n. Since v is not a principal eigenvector of 
A, there exists an index 1 such that aiv , /vr < An,.. It follows from the positiveness of v that 

Av < Av and aiv < Avg for some I. 

This means from uTA = AmaxuT that 

0> Eui(ait, _ AmaxVi) = E Amaxtiti = AmaxUTV AmaxUTV = 0, 
i=1 

which is contradiction. 
The other assumption also leads to contradiction in the same manner. 0 
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Theorem 6 Suppose that an incomplete pairwise comparison matrix A is irreducible. An optimal 
solution of Qi is equal to a positive principal eigenvector of A, and vice versa. An optimal solution 
of Q2 is also equal to a positive principal eigenvector of A, and vice versa. 

Proof: It follows from Lemma 3 that A is nonnegative and irreducible. Let Amax be the principal 
eigenvalue of A. Then it follows from (2) of Theorem 2 that 

. { kw anw w anw 
max min —, ... , } = Amax = Mill max { 

k 
 —,..., -1   . (5) w>o 101 an i w>0 11/1 10,, 

Since aiw = (a, - ei)w/Ki = (aiw - w)/K1, the left hand and the right hand of (5) are equivalent to 
Qi and Q2, respectively. Hence it follows from Theorem 2 that a positive principal eigenvector of A 
is an optimal solution of both Qi and Q2. 

Let v be any positive vector other than a principal eigenvector of A. Since A is nonnegative and 
irreducible, it follows from Theorem 5 that 

. { no a v n { al v - vi anv - vn 1 i- 
mm — = min 

V1 ii,,n  1 K1 VI 1 ••• ' KnVn 
I kV ... iinv 1 { (to - vi anv - v„ < max 

1 
1 vi vn f 

= max
vi Vn 

Therefore v is not an optimal solution of either Qi nor Q2. 0 

In order to combine the two optimization problems Qi and Q2, we propose the following discrep-
ancy minimization problem that evaluates the ratios of the self-evaluation value to non-self-evaluation 
value and their reciprocal: 

(Q3) mm  max { aiw - 
w>a • KnWn w - • • • anw ton

anw - wn KOJI KnWn 

Lemma 7 Suppose that an incomplete pairwise comparison matrix A is irreducible. Then Q3 has 
an optimal solution. 

Proof: Let Amax be the principal eigenvalue of A. Then it follows from Theorem 2 that for every 
positive vector v 

max aiv - 
• • • Knv„ anv - v„ - 

anv - vn  KnVn { aiv -  anv - v„ 1 > max  > Amax
Kith • • • KnVn 

and 

{ aiv - vi any - vn Kivi Kilii„ { Kivi Knvn  1 max 
Kivi ' • •• ' Knvn ' aiv - vi ' • * • ' anv - vn -> max ciiv - vi. anti - vn f 

.-i. 1=( min _icily - vi. anv - viz 1 \ 
> , 

1 Kim. ' * • * ' KnVn f)
Let w be a positive principal eigenvector of A. Then we have 

aiw - max 
Kiwi

anw - wn 
Knwn 

< max 
Kok • Knv,, aiv - • **' any - vn

for every positive vector v. 

alto - anw - wn 
= max {A, 1KnWn 

Amax 
aiv -  anv -  Knv,z 

Theorem 8 Suppose that an incomplete pairwise comparison matrix A is irreducible. Let Amax be 
the principal eigenvalue of A, then the optimal values of Q3 is max {Amax, Am-14. Furthermore an 
optimal solution of Q3 is equal to a positive principal eigenvector of A, and vice versa. 
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Proof: The optimal value is already shown in the proof of Lemma 7. Therefore, we only have to 
show that an optimal solution of Q3 is a positive principal eigenvector of A. 

Suppose that v is any positive vector other than a positive principal eigenvector of A. Then 
it follows from Theorem 5 that (min,{ (aiti - vi)/Kivi, • • • , (any - a4/Knan})-1 > Ai7.,1ax and that 
max {(ai t; - (any - un)/Knan} > Lax. This means that 

aiv -  any - 'an  Kok Knv„ 1  1 max > max {Amax, Kivi Amax y ,-•., Icvn v - anv - vn

0 

Theorem 8 asserts that Q1, Q2 and Q3 have the same optimal solutions. 

4 Some Properties of the Optimization Models 
In order to describe the structure of the incomplete pairwise comparisons for n alternatives, we consider 
the following undirected graph with n nodes: If a pair (i, j) of alternatives i and j is compared by 
a decision maker, the arc (i, j) between the node i and the node j is defined. We denote the graph 
corresponding to the incomplete pairwise comparison matrix A by G(A). In the case of the incomplete 
information, the graph is not complete. 

Harker method is available for evaluating the weight vector from an irreducible incomplete pairwise 
matrix A of order n and the weight vector of Harker method is a principal eigenvector of A with the 
diagonal entry an replaced by n - Ki. Therefore we formulate the following optimization problem 
corresponding to Harker method: 

(Q4) min max { —aiw + n - - 1, . . . , w >o wn 

Lemma 9 Suppose that A is an incomplete pairwise comparison matrix of order n, and that it is 
irreducible. An optimal solution of Q4 is equal to a principal eigenvector of A with the diagonal entry 
an replaced by n - K and vice versa. 

The proof is omitted. 

Theorem 10 Suppose that A is an incomplete pairwise comparison matrix of order n, and that it 
is irreducible. Assume that K1 = • • • = Kn. An optimal solution of Qi, Q2 and Q3 is equal to an 
optimal solution of (44, and vice versa. 

Proof: From theorems 6 and 8, the optimal solutions of Q1, Q2 and Q3 are equivalent, we only have 
to show one of them is equivalent to Q4. 

If K1 = • • • = Kn, then it follows that 

min max w>o 
{ alto -  Wi 

• • • Ka n
anw - WTI} 1 . { aiw - till anw - w„ 1 = min max 

Ki w>o ail Wn 
1 . ai w , anw . 1 = — min in / — - I, ... , — - i Ki w>o wi Wn 
1 . ai w anw  1 = — min max — 

—5- F. K1 w>o tai wn Ki 

Hence an optimal solution of Q2 is equal to an optimal solution of minm>0 max {alw/wi, , anwhan}• 
Furthermore since K1 = • • • = Kn, Q4 is equivalent to 

alto anw 
min max , + n - -1. 

raj TZ 

Therefore an optimal solution of Q4 is equal to mina,>0 max {aiw/wi, • • • , anwiwn} • 0 

All nodes of the graph G(A) have the same degree if and only if Ki = • • • = K„. Such a graph is 
called regular. The above theorem can be also expressed in terms of graphs: 
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Corollary 11 Suppose that A is an incomplete pairwise comparison matrix of order n, and that G(A) 
is connected and regular. An optimal solution Q4 is equal to an optimal solution of Q 1, Q2 and Q3, 
respectively, and vice versa. 

The following theorem guarantees that both G and Q4 provide non-biased weights for the consistent 
pairwise comparison values. 

Theorem 12 Suppose that A is an incomplete pairwise comparison matrix of order n, and that it 
is irreducible. Assume that the optimal value of (24 is n. An optimal solution of Q4 is equal to an 
optimal solution of Q3. 

Proof: Suppose that w is any optimal solution of Q. Since A with all diagonal entries a1 replaced by 
n is a nonnegative irreducible matrix and the optimal value of Q4 is n, it follows from Theorem 2 
that n = +n — K1 — 1= • • • = ahw /w,, + n — Kn —1. Therefore we have (aiw — = 
for every i = 1, , n. This means form Theorem 8 that 

1 
max {Amax, 

Amax 
< max w — anw — w Kiwi Kwn  1 

Kw n aim — anw — wn

= 1 max { A„,   , 
AMaX 

where Amax is the principal eigenvalue of A. Therefore w is an optimal solution of Q. 

Corollary 13 Suppose that A is an incomplete pairwise comparison matrix of order n, and that it 
is irreducible. Assume that the optimal value of G is 1. An optimal solution of C13 is equal to an 
optimal solution of Q. 
Proof: It is trivial from the proof of Theorem 12. 0 

The above two assertions means from Theorem 8 that an optimal solution of Q4 is an optimal 
solution of Qi for i = 1, 2, 3, respectively. 

Corollary 14 Suppose that A is an incomplete pairwise comparison matrix of order n, and that it 
is irreducible. Assume that the optimal value of Q4 is n. An optimal solution of Q4 is equal to an 
optimal solution of Qi for i = 1,2,3, respectively. 
Here, we consider the special structure of G(A), a spanning tree. 
Corollary 15 Suppose that A is an incomplete pairwise comparison matrix of order n, and that G(A) 
is a spanning tree. An optimal solution of Q4 is equal to an optimal solution of Qi for i = 1,2,3, 
respectively. 
Proof: If G(A) is a spanning tree, the rank of the node-arc incidence matrix of G(A) is n — 1. 
Therefore there exists a positive vector tu = (w1, , w „)T such that Kiaii = wi/wi for Eiji > 0 and 
we have 

aiw = aiw — wi — E>o wi — wi — (Ki + 1)wi — wi —1 
wi Kiwi Kiwi Kiwi 

for every i = 1, ... , n. Hence the optimal value of Q3 is 1, which implies by Corollary 13 that the 
optimal value of Q4 is n. This assertion is held by Corollary 14. 0 
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