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We begin by defining the hierarchy followed by a brief descriptions of the algorithm for computing the range of 
the value function. Algorithmic details are then developed followed by detailed description of the calculations 
needed for a specific hierarchical structure. The generalization is readily apparent. 

Defining the Hierarchy 

Figure 1 illustrates a generic hierarchical architecture for a multi-attribute decision problem. Note that branches 
or subgraphs of the hierarchy may terminate at different tiers or levels. Dummy elements may of course be added 
at intermediate levels if equal depth branches are desired. At the highest level (Tier 1) is the Major Goal. This 
could be Sustainable Agricultural System in the case of a problem to determine the best farm management system 
from a finite number of alternatives for a given farm or region or Traffic Plan for a problem to define a traffic 
policy from among several alternative plans. The subsequent levels (Tier 2 through N) contain sub-elements of the 
parent or previous levels. Thus, for example in the sustainable agriculture problem, Tier 2 could include 
environmental, economic, and social sub-goals. Subsequent levels of the environmental branch could then include 
surface water, sub-surface water, and soil, followed by criteria including fertilizer and pesticide impacts, and 
erosion under the proper parent category. Of interest in this work is the effect of changing the priority (importance 
or preference) order of the elements of the hierarchy. In all figures, it is assumed that the priority order is from left 
to right. That is, for elements emanating from a common branch, an element to the left of another element in the 
same tier has a higher priority and therefore more "weight" in the decision making process at that level. No 
assumption is made regarding the priority relationship between elements on different branches. 

As is the case in most multi-attribute solution methods, the goal of the methodology is to determine the value of 
an additive value function that can be used to rank the set of alternatives. An additive value function in the 
following form is assumed: 

v(v,v)= Ei wiv, 
Where i ranges over the terminal elements of each branch and the weights, w, are consistent with the hierarchy and 
normalized so that they sum to 1. We emphasize that V is a function of both the individual criterion values 
determined for each alternative and the weights determined for each attribute or criteria. Since we are primarily 
concerned with the effects on the above function caused by changing hierarchical element priorities, we will assume 
that for each alternative, vi is fixed for all i. We refer to the above as V, or subscripted, V, when wishing to 
distinguish between alternatives. 
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element °lemon element 

Tier 3 
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• • • 
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• • • • • • 
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element element element 

• • • 

Figure 1. Generic Decision Hierarchy 
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Algorithm Outline for Computing the Range of Values Under a Hierarchy 

The algorithm for assessing the full range from best to worst under our assumptions begins at the lowest tier of each 
branch of the hierarchy. Best and worst additive values are computed for each element using closed form solutions 
to two simple linear programs that maximize and minimize Vat the parent element over all weights consistent with 
the priority order of the decision elements. These same programs are used at intermediate elements, substituting 
the maximum (or minimum) values previously'computed as the values for those elements that have descendent 
elements, until the main or first tier is reached. Altering the priority at any level requires redoing only those 
calculations that occur after that point to the main or first tier. This fact makes it easy to examine the effects of 
changing priorities or decision maker preferences, which may be especially useful if there are more than one 
decision maker or affected parties involved. 

Algorithmic Details: 

Details of the algorithm will now be described. Please refer to the annotated portion of Figure 1. 

Computing Best and Worst Subvalues for the Lowest Tier of each Subgraph 

Given the importance order of the criteria at the lowest tier of each subgiaph, best and worst additive values can 
be found without requiring the decision maker to set specific weights for each of the criteria (Salo and 
Hamalainen,1992; Yakowitz, Lane and Szidarovszky,1993). 

Referring to the notated branch or subgraph at Tier N of Figure I, it is assumed that if i < j then criterion i has a 
higher priority than criterion j (i.e. criterion I has higher priority than criterion 2 and so forth). Since there are in 
criteria, the priority order suggests that we should require that the weights, it',, 1=1,111, have the following relation: 

W > W > > W 

Therefore, given the-priority order and the criteria values for altemative j, the best (worst) composite score that 
alternative j can achieve is determined by solving the following linear programs (LPs) (Yakowitz, Lane and 
Szidarovszlcy, 1993): 

Best (Worst) Additive Value: 

max Olin )1v Vj Erm-i wry?' 
s.t. En!1-1 1=1. 

W 2W 2...2W 20 1 2 in • 

The best additive value is found by maximizing the objective function while the worst additive value is found by 
minimizing the objective function. The first constraint is a normalizing constraint. The second, fixes the importance 
order and restricts the weights to be positive. The above linear programs are solvable in closed form according to 
Yakowitz, Lane and Szidarovszlcy (1993): For k=1,... 

Ski = MC Vu. 

Then, the best or maximum additive value (Max V) for altemative j is given by: 

(Max V)1= mark (Ski. 

The worst or minimum additive value (Min V) for alternative j is given by: 

(Min V,.= mink (Ski. 

(1) 

(2) 
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In the case of equal importance of some criteria, there are strict equalities in the importance order constraint set, 
i.e. w1=w for j in a subset, of the integers 1 through in. If we define K = (7 1, 2, ... , m1\11, then the above 
formulas for Mar and Min V apply if k is restricted to the set K (ie. kel(). Calculations for other variations, 
including cases in which it is desired to specify the level of preference between criteria, criterion 1 is to have a 
weight at least twice that of criterion 2, for example, are given in Yakowitz, Lane and Szidarovszlcy (1993) . 

For each alternative, the above solutions determine the maximum and minimum additive value possible for any 
combination of weights that are consistent with the hierarchal order of the criteria/attributes. Having these two 
objective values available immediately alerts the DM to the sensitivity of each alternative to the weights possible 
with the current priority order of the criteria. These values can be displayed graphically (illustrated later) in the 
form of side by side bar graphs with the best value for each alternative at the top of each bar and the worst value 
at the bottom. 

An alternative that exhibits little difference between the best and worst values indicates that this alternative is 
relatively insensitive to any vector of weights consistent with the importance order. Additionally, if the worst value 
of one alternative is greater than the best value of another alternative, then that alternative strongly dominates 
(Yakowitz, Lane and Szidarovszlcy, 1993) or absolutely dominates (Salo and Hamalainen, 1992) the other 
alternative. 

Computing Best and Worst Values for a Multi-level Hierarchy 

Additional constraints can easily be added to the LPs to account for a hierarchy of the criteria and still provide the 
range from best to worst composite scores. For example, suppose we have a three tier hierarchy, and each element 
I in Tier 2 is composed oft, sub-criteria in Tier 3, the terminating level. Let i/i.k and Iva , k=1,...,t; indicate the 
values (scores) for alternative j, and sub-weights (unspecified), respectively, associated with sub-criteria k of 
criteria i. Then, the following two constraints for each i are added to best/worst LPs to account for this hierarchy: 

Wi= WO+ 1,2+ +w.

W412 W 422 ".. 2 W2 0 

The objective functions of the best/worst LPs for alternative j are then replaced by: 

max(min) L k WiskVijci . 

Again, there is no need to specify weights or sub-weights to obtain the range from maximum to minimum. Linear 
modifications due to more general hierarchical considerations are easily made in this manner. Therefore, an explicit 
linear program for computing the maximum and minimum V for any hierarchy can be formulated and solved 
explicitly. The notation needed to indicate each level of the hierarchy, however, becomes very cumbersome. 
Solving these programs explicitly is not necessary since an algorithm that considers each portion of the hierarchy 
in an optimal manner is much more amenable to examining the effects of changing priorities. Calculating min and 
max Vis an intuitively simple procedure when performed from the lowest tier up. To illustrate this fact, the solution 
procedure will be described for the four tier decision hierarchy of Figure 2. 

Algorithm for Computing the Range of Values Under a Given Hierarchy 

The following procedure is described for solving for the range from best to worst of additive values under the 
hierarchy illustrated in Figure 2. The procedure for other hierarchial variations is handled in a similar manner and 
will become transparent. 

The formula for Ski on page 175 of Yakowitz Lane and Szidarovszky (1993) for this case is in error, please 
contact the lead author for correction. 
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Tier 1 

Tier 2 

Main 
Goat Best(Worst) V 

element element element 

max(min) v(2.1) 2.1 2.2 23 
max(min) v(2.3) 

v(2.2) 

Tier 3 element elemen 
3.1.2 

element 
3.1.3 

element 
3.1.4 

_L 
element 

3.3.1 
element 

3.3.2 
max(min) '43.1.1) max(min) v(3.3.1) 

v(3.1.2) v(3.1.3) v(3.1.4) v(3.3.2) 

Tier 4 element 
4.1 1.1 

element 
4.1 1.2 

element 
4.1 1.m 

element 
4.3 1.1 

element 
4.31.2 

element 
4.3141 

v(4.1.1.1) v(4 1.1.2) . . v(4.1.1.rn) v(4.3.1.1) '44.3.12) ... v(4.3.1.n) 

Figure 2. Decision Hierarchy for Algorithmic Explanation 

For each alternative under consideration, we assume that the associated value for the terminal elements has been 
determined by some means. Thus, for Figure 2, the values indicated by v(2.2), v(3. 1.2), v(3. 1.3), v(3.1.4), v(3.3.2), 
v(4.1.I.1)  v(4.1.1.m), v(4.3.1.1)   v(4.3.I .n), are known for each alternative. All indices are with respect to 
the hierarchy of Figure 2, which indicates the inputs and calculations required. 

Calculations start at the lowesi Tier in the hierarchy. In this case, Tier 4. 

• Tier 4. 
NI Compute for each alternative j, 

SO. /. = .//k L.43(4.1.1.0, /c=1.... .
and S(4.3.1)4 k E, 1/ 3(4.3.1.0, ,n. 
Then according to (1) and (2), 
max (min) 3(3.1.1) = max (min)k {S(4.1.14), and 
max (min) 3(3.3.1)= max (min)k 6S(4.3..0k). 

• Tier 3. 
am Compute the following for each alternative j: 

S„,,z13. kj = I/k E = 3(3.1.0, for k=1,... ,4, 
with v13././)= max (13.1.1)), and 

S„,„,(3. = 1/kE =1....k 3(3.1.0, for k=1,... ,4, 
with 3.13.1.1)= min ( ,13.1.1)). 

S„,„„(3.3)4 = I/1c L 3(3.3.0, k= 1,2, 
with v/3.3.1)= max (3[3.3.1)), and 

S„,„(3.3)ki = = ,...4 3(3.3.0, k=1,2, 

with 30.3.1)= min (3(3.3.I)). 
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Then: 
max (min) 3(2.1)= max (min)k {S„,„* „i„)(' .1V, and 

max (min) vi(2.3) = max (min)k 18(3.3)k). 

IS Tier 2. 
in Compute the following for each alternative j: 

S„,a (2)4 1/k yi v/2.0, for k=1,... ,3, 
with v/2.1)= max (3(2.1)), and 

vi(2. .3) = mar (v/2.3)), and 
S„,,„(24 = 1/k xi 1,4 v12.0, for k=1,... , 3, 

v/2.1)= min (v/2.1)), and 

v/2.3)= min ('v12.3)). 
Then: 

Best (Worst) Vi  = max (min)k {S.„ („in)(2)id 

A bar graph with a bar for each alternative that ranges from the Best Vi at the top of each bar to the Worst Vi at the 
bottom of each bar would aid the decision maker by indicating domination and the sensitivity of each alternative 
to the priorities in the hierarchy. 

Changing a priority ordering in any tier in the hierarchy, requires only recalculating appropriate max and min 
values in the tiers above. For example, assume Figure 3a is the bar graph obtained under the present priority order 
of Figure 2 for four alternatives. Clearly, Alternative 2 dominates Alternative 3 and is preferred to Alternative I 
which is very sensitive to the weights given the existing priority orders. Now, suppose one wishes to consider the 
scenario in which the elements previously ordered in Tier 2 are reversed. Then, only those calculations indicated 
under Tier 2 given above, need to be computed again. If Figure 3b is the result of the this new evaluation, then it 
can be argued that Alternative 2 does well with respect to both of the priority orderings and is prefen:ed over all 
other Alternatives for the latter ordering. As described in Yakowitz, Lane and Szidarovszlcy (1993), the alternatives 
can be ranked based on the average of the Best and Worst Ic In both of the example cases Alternative I would 
be ranked first. Other scenarios that reflect the differing priorities of interested parties or multiple decision makers 
could be quickly examined. If, as in this example, one or two Alternatives stand out as doing w,ell under multiple 
decision scenarios, one would have a strong basis for supporting these alternatives and avoid unnecessary 
argument. 
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b. Reverse priority order of Tier 2, Figure 2 

Figure 3. Bar Graphs of Range of Values Under Two Priority Orderings of Tier 2 in Figure 2 
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Conclusions 

A method to explicitly calculate the full range values possible for an additive value function subject to the priorities 
of a hierarchical decision structure was developed. The method involves the solutions to simple linear programs. 
A solution method that does not require that LPs be solved explicitly was presented. This procedure also 
minimizes the number of calculations needed to examine the effects of changes to the hierarchical structure. As 
illustrated in the example above, the method could be a valuable aid to decision makers especially in the case of 
multiple decision makers or stakeholders. In this case the ability to take into account other viewpoints and examine 
the impact on the ranking of alternatives by the method described above could be a strong negotiation tool. 
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