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Abstract: Ratio srales are the life blood of the AHP. By definition ratio wales are nonnegative. 
Sometimes one is faced with solving a system of linear equations involving ratio scales and 
solving equations can give rise to negative numbers. This note provides a partial discussion of 
the relation between ratio scales, the solution of equations and the meaningfulness of negative 
numbers. iv
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1. INTRODUCTION 
There are areas of mathematics such as probability theory where negative numbers are 

not allowed, which make appropriate use of subtraction to always produce nonnegative numbers. 
Similarly, %,hen all the variables of a system of equations belong to a ratio scale as do yards and 
kilograms, invariant -under multiplication by a positive constant, a negative solution is 
meaningless. •Negative numbers cannot belong to a ratio vale. What is needed is a way of 
generating positive numbers that can be associated with the solutions, and a way to interpret the 
meaning of negative numbers obtained from them. In his Complete Introduction to Algebra 
(1770), Euler justified the operation of subtracting -b as equivalent to adding b because "to 
cancel a debt signifies the same as giving a gift." Apparently, more than a thousand years 
before Euler, the Indians used negative numbers to represent debts, leading to the acceptance 
of negative 'coefficients and negative solutions of equations [1]. Descartes called negative roots 
of equations false on the ground that they claim to represent numbers less than nothing. This 
sort of puzzling over the distinction between subtraction and negative numbers haunted 
mathematicians in the late 18th and early 19th century [3]. Resolution is still needed, for 
example, for those who deal with systems of equations involving ratio scales and must explain 
the result. 

If we use mathematics to model a real life problem, and if inherent in that problem it is 
not possible to get a negative solution, then a negative solution from a model means that the 
problem is modelled incorrectly. One way to validate the model is to obtain a solution. If it 
is negative we know that there is something wrong with the model, or the problem itself is 
infeasible. 

Suppose a tailor makes two standard products, pants and shirts, using the same material. 
Suppose that in a certain week he makes five pants and two shirts using 20 yards of material. 
The week before, he made four pants and seven shirts using 25 yards of material. Now he has 
an order for pants and shirts and wants to buy material to make them, how much should he buy? 
The answer to this question requires knowledge of how much material the tailor uses to make 
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a unit of each product, if each product requires the same amount each time. We have: 
5x + 2y = 20 
4x + 7y = 25 

and x = 10/3 and y = 5/3. If the solution value of one of the variables were negative, we 
would conclude that something must be wrong in the statement of the problem. But in some 
problems, as mentioned by Euler, it can happen that a variable which represents giving rather 
that taking may be negative. How do we give meaning to it? 

Our goal in this note is to provide a representation of the solution using nonnegative 
vectors. However, we may still use negative numbers as an auxiliary to derive positive solutions, 
just as complex numbers are used in Electrical Engineering to represent the magnitude and phase 
of signals, and Fourier series are used to represent the frequency spectrum. Our assumption is 
that we cannot start with negative numbers in our system of equations because they are 
meaningless on ratio scales or as probabilities. Negative numbers are an elegant way for 
representing solutions when we use our traditional one-sided approach to solve a system of linear 
equations by putting all the variables on one side and inverting the matrix of coefficients. An 
alternative way is to use a two-sided or balancing approach, thus placing only positive numbers 
on both sides of the system, and then imposing conditions to obtain nonnegative solutions for 
each side, whose combination yields the kind of solution with negative numbers derived by the 
one-sided approach. One may argue that a negative number can be written in an infinite number 
of ways as the difference of two positive numbers placed on two sides of an equation. It is this 
kind of observation that we want to address by directly deriving unique positive solutions. 

2. NONNEGATTVE SOLUTIONS - Mt MAIN THEOREM 
A linear algebraic system 

Ax=b (1) 
may or may not have a nonnegative solution x = AJT even when A = (au) 0, 
i =1,...,n, j=1,...,m and b = 0. The Minkowski-Farkas theorem [2] is 
concerned with the existence of a nonnegative solution: 

"Given an equation Ax=b, where b is an element of Te , a necessary and 
sufficient condition for a solution x 0 to exist is that uTb 0 holds for any 
vector u such that uTA 0." 
It is well known that a positive system of equations does not always have a positive 

solution. The system of 2 equations in 2 unknowns: 

[
23
1 2

has the solution rx:1 = I: x 1 
-11 
2 

A well known characterization of positive solutions is: 
Theorem 1. A necessary and sufficient condition for (1) to have a positive solution x> 0 is that 
b can be represented as a positive linear combination of the columns of A. 

X = 

hi 

Proof: (Necessity) Let b = E co. A.=Ae., ./ b..= {n1 
ir-j 

.; cif > 0, for all j. If we J y 
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write xi = eij, for all j, we have x > 0 and the result follows. 

(Sufficiency) b = Ex f A1 eE aj A1 and the proof is complete. 
J-1 

If we normalize the columns of A and b to unity we obtain what is called a stochastic 
system: A'x' = bi

where A' = A I.1 

and 

with solution: x•J = x.j(E a.)(E j=1, 2, ..., in 

and we no* have: 
Corollary 1. A necessary and sufficient condition for (1) to have a positive solution x> 0 is 
that b belongs to the convex hull of the columns of A'. 
Corollary 2. A necessary condition for the vector b' to belong to the convex hull defined by the 
columns of the matrix A' is that: 

min{a} b/ max{ao}, for all i. 

E 0 0 
lel 

0 aur 0 

0 0 aun)-1
i.1 

bj = . 

iel ti 1.1 

Proof: Assume that there exists a> 0, for all J, E = 1, such that b' = E u. 
j•I 1'1 

We have, for all i, mitiaat; = E min,{4}a, b/ E maxj{ataaj = maxi{a;} . 
J-1 

The foregoing theory is descriptive rather than constructive. As for the latter we note 
that while tnatrix inversion is the standard procedure for deriving solutions to a linear system 
of equation's, it relies on the use of negative numbers and does not ensure nonnegative solutions. 
A constructive procedure for obtaining a nonnegative solution relies on the Perron-Frobenius 
theorem [4]. It identifies the principal eigenvector of a nonnegative matrix of coefficients of a 
homogeneous system as a nonnegative solution. That vector can be estimated from the limiting 
powers of the matrix, and it is given by: 

where e =1(1, ..., 1)T. 
If alpositive solution exists, it can be easily shown that the solution of Ax = b is also a 

solution of a related eigenvalue problem. 

km. A ke 
k-co e rA ke s
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•-) 

0 b1 0 

Define Diag(x) = 
0X2 •• 0 

and Diag(b) = 
0b 2

E 3 

0 0 0 0 

Theorem 2. If (1) has a non-negative solution, there exists a nzatrix 
B = Diag(x)AT Diag(b)-1 (2) 

such that x is the principal right eigenvector of the eigenvalue problem: 
-1 BAx = x. (3) 

Proof: If we write (1) as 
ADiag(x)e = Diag(b)e (4) 

and multiplying by both sides on the left by Diag(b)-1 we obtain: 
Diag(b)-1ADiag(x)e = e. (5) 

Existence of a solution of (1) implies that there is a matrix B such that x = Bb which in turn 
can be written as: Diag(x)e = BDiag(b)e. (6) 
Substituting for (4) in (6) yields: 

Diag(x)e = BADiag(x)e or BAx = x. 
Similarly, it can be shown that ABb = b holds. Thus, we have: 

10 Al [bI = {b} . 
BO x x 

This system has a solution if and on y if [1: 
A = Diag(b)Siag(x)1

from which (2) follows. 
Thus, if we know that the system has a positive solution we can find it by solving an 

eigenvalue problem using Perron-Frobenius theory thus avoiding the occurrence of both 
subtraction and negative numbers which appear in matrix inversion. We still have for a general 
system of linear equations that: 
Theorem 3. The solution of Ax = b is the principal right eigenvector of 

[A TIDiag(b)-IADiag(x)1. 
Proof: From Theorem 2 and BAx = x we have 

Diag(x)A TDiag(b)-1Ax = x (7) 
or x T[A TDiag(b)-14Diag(x)] = x r
and the result follows. 

An algorithm for deriving the solution is based on the following iterations: 
Let xa )̀ be the lcth estimate of the solution and let 

X (k+1) = X(k) + - A rDiag(b)-1ADiag(rnie (8) 
It can be shown that xi' ) converges to [21Thiag(b)4Are, which is the desired positive solution. 

When positive solutions do not exist, one can decompose the system and the solution into 
two corresponding nonnegative components. When the solution components are added, they 
yield the solution of the entire system. This stronger approach using subtraction but not negative 
numbers which bedevil one in the context of ratio scales, is effected by transforming the original 
system as we now show. 
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3. GENERAL SYSTEMS OF LINEAR EQUATIONS 
Consider a system of equations Az = b where A is an arbitrary real matrix. We write 

this system as: ' Aix = b + A2x (9) 
where A = A1 - A2, Al 0 and A2 0. It is convenient to take /11 as the positive part of A and 
A2 as its negative part. If this system has a solution, then there exist non-negative vectors xi , 
x2, bi and b2 such that Axi = bi, i = 1, 2, A(x -x2) = b, and b= b1 - b2. 

A negative solution (a solution with some negative components) can be interpreted as a 
pair of nonnegative vectors xi and x2 that satisfy: 

= A2xi + 
A1x2 = A2x2 + b2 (10) 

= b + b2
The solution of this system can be obtained by solving the linear program: 

Minimize 2.7 (xu+x2i) 

subject to: 
c-

-A2 0 0 -10
x l

22 
0 0 Ai -A2 0 -1 

= {600 
0 0 0 0 0 1 -I 

22 

0 
b 2

( • x1, x2) b11 b2 > 0 

where xk = k=1,2, and bk = k=1,2. 
The solution of the system can now be written as a 4-tuple of positive vectors: 

x = b1;x2, 
As an illustration, the system: 

{3 3 2 {21
2 -3 -2 x2

b2). 

3 
7 

4 -1 -2 x3 5 
L • A 

can be solved by decomposing the matrix A into 
3 3 2 0 0 0 

Ai = 2 0 0 and A2 = 0 3 2 
1,400 0 1 2 

and solving the corresponding linear programming problem given by (11). We have: t 
6.5 .5 25.5 22.5 

x= i 0 x2 = 3 i, bi = 7 I, and b2 =1 0 I. 

3 0 20 15 

1 ( + 

65 



from which, if we allow negative (nonratio scale) numbers, the solution of the original system 
is obtained by writing x = - x2 = (2, -3, 3)T. 

This formulation is equivalent to the well known linear programming problem in which 
we ensure a nonnegative solution by replacing constraints by: 

A(x I - x2) = b 
where xl and x2 are nonnegative, which can be written as: 

Azr2 = b A1x2. Azz i 

where as before A = A1 - A 2. 
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