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Abstract: While Saaty's eigenvector method constitutes the founding stone for AHP, its 
validation still leaves an open problem: Why is the principal eigenvector of positive reciprocal 
matrix of pairwise comparison relevant for the ratio scale of the objects compared? This paper 
establishes a choice theoretic foundation for this open problem. The binary choice probability 
problem for given n objects is an inverse problem to ...nd a probability distribution over nl 
rankings that induces given n r-112IS binary choice probabilities. This paper reformulates Saaty's 
eigenvector method as a binary choice probability problem and shows that a certain equivalence 
exists between the binary choice probability problem and Saaty's method in the sense that the 
solution for the binary choice probability problem exactly reproduces the Saaty's eigenvector 
for n = 3. This result gives a choice theoretic validation for Saaty's eigenvector method. 

Introduction 

While Saaty's eigenvector method constitutes the founding stone for AHP (Analytic Hierarchy 
Process), its validation still leaves an open problem: Why is the principal eigenvector of positive 
reciprocal matrix of pairwise comparison relevant for the ratio scale of the objects compared? 
This paper addresses this open problem and establishes a choice theoretic foundation for Saaty's 
eigenvector method. 

The key idea in this paper is the I-projection modeling for the binary choice probability problem and 
its application to characterizing Saaty's eigenvector method. In general, the I-projection problem 
is a convex program to ...nd a probability distribution that minimizes Kullback-Leibler information 
among the ones that satisfy some convex constraint. The solution for the I-projection problem 
is called the I-projection onto the convex constraint. The statistical method formulated as the !-
projection problem is referred to as I-projection modeling. (Saito (1998)) The I-projection modeling 
...nds many applications in various ...olds such as economics, transportation science, statistics and 
so on. As for theoretical argument, the I-projection problem is closely related to information 
theory, maximum entropy or minimum information principle, maximum likelihood estimation, 
inverse problem, and large deviation theory. Quite interesting is its relationship to the linear 
statistical inverse problem to choose the best probability distribution among the ones satisfying 
linear constraints. Under some axioms, the I-projection problem is derived logically as the best for 
obtaining the solution for the linear inverse problem. (Shore, Johnson (1980), Csiszar (1991)) 

Binary choice probabilities generically have the character of pairwise comparison. They are de...ned 
as fpu g for i 6=j such that pu + pji = 1. Note that a positive reciprocal outcome matrix fau g 
can be transformed into binary choice probabilities fpu g with one-to-one by pu at -0 , or 
equivalently, au = f,k1,-. Traditionally, the binary choice probability problem for n objects has been 
known as a problem to ...nd the condition of when given -- 1"—("2 1) binary choice probabilities can 
be induced by some probability distribution over n! rankings, i.e., all linear orders of n objects. 
However, as will be seen later, whether some probability distribution induces given binary choice 
probabilities can be expressed as linear equality constraints imposed on the probability distribution 
so that we formulate the binary choice probability problem as an inverse problem to ...nd the best 
probability distribution over nl rankings that satis...es T. -12IS binary choice probability constraints. 
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This inverse problem formulation for binary choice probability problem makes possible some curious 
probabilistic argument and our use of I-projection modeling for the solution method. 

Based on these observations, this paper applies the I-projection modeling for the binary choice 
probability problem to the characterization of Saaty's eigenvector method to tackle the above 
open problem. I have demonstrated that a certain equivalence exists between a binary choice 
probability problem and Saaty's eigenvector method in the sense that the solution for the binary 
choice probability problem exactly reproduces the Saaty's eigenvector for n = 3. More speci...cally, 
if the residual matrix of Saaty's method is transformed into binary choice probabilities, the !-
projection for this residual binary choice problem becomes "indinerent" to all three objects with 
respect to the probability how each object is ranked among three. In fact, the probability that 
each object is selected as the top becomes identical for all three objects. 

Here the residual matrix is the elementwise division of an outcome matrix by the consistent matrix 
constructed by the Saaty's eigenvector. It is well known that the residual matrix becomes a 
scalar multiple of stochastic reciprocal matrix and its right principal eigenvector is 1, all of which 
components are l's. (Saaty (1980), Vargas (1983)) This fact has been used for validating Saaty's 
eigenvector method since no information is remained in the residual matrix from the viewpoint of 
eigenvector. In the same way, the above result of this paper implies that no "partial" information 
is contained in the residual matrix from the binary choice perspective, either. This is because the 
I-projection solution for the residual makes no partial contribution to the probability how each 
object is ranked among three. Hence this gives another validation for Saaty's eigenvector method. 

The interpretation of inconsistency for pairwise comparison need not be limited to misjudgment by 
respondent. In fact, since its solution of probability distribution over nl rankings is a convex mix-
ture of nl distinct preferences, we see that the I-projection modeling for binary choice probability 
problem regards the inconsistency as arising from the mixture of nl distinct preferences. Thus it 
can be interpreted as a theoretical method to decompose aggregated preferences of binary choice 
probabilities into a convex mixture of distinct consistent preferences. (Saito (1989,1998)) It should 
be noticed that the more detailed analysis of inconsistent pairwise comparison becomes possible 
for I-projection modeling than Saaty's eigenvector method. 

Binary choice probability problem 

Let N denote a set of alternatives. Consider a binary relation R on N £ N. Denote xRy if 
(x; y) 2 R 1/4 N EN with understanding that x is "preferred to" y. Assume that the binary relation 
R is a linear order, i.e., irretexive, transitive, and complete. Under a linear order R, all of the 
alternatives can be ordered from the most preferred to the least. Thus the sets of all distinct linear 
orders on N £ N consists of jNj1 rankings. Consider the probability distribution X on S and let 
Px (R) denote the probability that the linear order relation takes R, i.e., Px (R) = Prob(X = R). 
The binary choice probabilities, fpu; ij 2 N; i 6=jg is de...ned as follows. 

0 and pu -i-pj j = 1 for every i; j 2N with i j: (1) 
The number pu is interpreted as the probability that i is preferred to j . If a probability distribution 
X is given, the binary choice probabilities fpu ; i; j 2 N; i 6= j g are consistently determined as 
follows. 

X 
Pb = R2fQ2SJIco 

g 
Px (R) for every i; j 2 N with i (2) 

The binary choice probabilities are said to be consistent if there exists a probability distribution 
X that satis...es (2). In this case, we say that the probability distribution X induces the binary 
choice probabilities fpu ; i; j 2 N; i 6=j g. If a probability distribution X on S is given, constructing 
a consistent binary probabilities can be easily performed by equation (2). However, binary choice 
probabilities are arbitrarily de...ned by (1) without referring to a probability distribution on S. 
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Thus, given binary choice probabilities, it is not trivial to determine whether they are consistent. 
Also not trivial is to recover the probability distribution which induces the given binary choice 
probabilities when they are consistent. 
The binary choice probability problem: When is there a probability distribution X on S 
that satis...es (2) for a given binary choice probability system fpu ; ij 2 Ni ; i 6=jg? 
Up to now, several necessary conditions are known for this problem but the sucCcient condition 
which holds for every jNj has not been known. While the binary choice probability problem 
originally dates back to Block and Marschak (1960), recently much attention has been paid again 
on this problem. As for the motivation, background, history, and current researches of the binary 
choice probability problem, the readers are referred to Falmagne (1978), Fishbum and Falmagne 
(1989), Gilboa (1989), Cohen and Falmagne (1990), Marley (1990), and Fishbum (1990, 1992). 

l -projection modeling for binary choice probability problem 

While the binary choice probability problem has been de...ned as a problem to ...nd the condition 
for the existence of a probability distribution that induces given binary choice probabilities, here 
we formulate it as the I-projection problem to ...nd the best probability distribution over S that 
induces given binary choice probabilities. To ...x the idea, I use the case of N = f123g. Any binary 
choice probabilities fpu g can be represented by. an jNj £ jNj table of pairwise comparison data 
such as Table 1. 

Table 2: Linear orders for cubic case 
Table 1: Binary choice probabilities 

column 
row . 

1 2 3 

1 _ P12 P13 
2 p21 _ P23 
3 P31 P32 _ 

Ranking R Px (R) 1R2 1R3 2R3 
123 q1 1 1 1 
132 qz 1 1 0 
213 q3 0 1 1 
231 q4 0 0 1 
312 cis 1 0 0 
321 q6 0 0 0 

P12 P13 P23 

Table 2 lists all linear orders on N and indicates respective truth values of 1R2, 1R3, and 2R3 for 
each linear order R. For example, the linear order R = 123 means that 1R2 and 2R3 hold true, 
so that by transitivity of R, 1R3 is also true. These truth values are shown as three l's in the last 
three columns of the ...rst row in the table. Other rows can be interpreted in the same way. 

The binary choice probabilities, p12. P13. and p23 are listed at the bottom line of Table 2. it they 
are consistent, equation (2) must hold. The equation (2) means that pu equals the sum of the 
probability Px (R) over every R where il3j holds true. Thus the consistency implies that p12:1313, 
and p23 must equal the respective column sums of probabilities qi to q6, where summation is taken 
over every row where truth value is 1. Hence the consistency condition can be summarized as 
the following equation (3). Given a probability distribution frit°, it is easy to construct consistent 
binary choice probabilities fpu g from (3). Our problem is its inverse. Given the binary choice 
probabilities fpug, we must solve the equation (3) for the unknown probability fqk; k = 1;:::; 69. 

ql + q2 + q5 = P12 
Q1 ± Q2 ± Q3 = p13 
ql + q3 + (la = p23 

(3) 

There seem to be many probability distributions on S that satisfy equation (3). We need some 
criterion to choose the best. This is just a linear statistical inverse problem. From the axiomatic 
argument on the logically valid inference for linear inverse problem (Shore, Johnson (1980), Csiszar 
(1991)), we can employ Kullback-Leibler information as such a criterion. Therefore, the binary 
choice probability problem can be expressed as the following I-projection problem to ...nd the 
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I-projection q° onto K. 
11 qi 

I (cr;14) = mini (q;%) = min qi log —Yu 
(4) 

q2K fqig2K 1=1 

where I (q;%) denotes Kullback-Leibler information of q with respect to %, K is the convex set of 
probability distributions satisfying (3), and Y4 is the given initial probability distribution. 

It is instructive to note that the above inverse formulation for binary choice probability problem 
is closely associated with various interesting topics: image reconstruction, latent class model, 
maximum likelihood estimation under incomplete data, and decomposability of (n; m)-tournament 
into chains (Fishbum (1987)). (For further detail, see Saito (1998)) 

A choice theoretic characterization of Saaty's eigenvector method 

Now the I-projection modeling for binary choice probability problem is applied to a choice theoretic 
characterization of Saaty's eigenvector method. The essential point of this characterization lies in 
viewing the outcome reciprocal matrix as ratios of binary choice probabilities since the outcome 
reciprocal matrix fag g corresponds to binary choice probabilities fpu g with one-to-one by pu = 

i e aii = RLL. With this, ...rst the outcome matrix is transformed into binary choice au +1 • u  
probabilities and then the I-projection modeling is applied to obtain the l-projection onto the 
binary choice probability constraint. 

I begin with the simple case of the 2 2 matrix. Let A denote a positive reciprocal outcome matrix 
and P the corresponding binary choice probability matrix. 

1 a12 A= 1=a12 1 P = 1 
1 

312+1 

S2_ • 
312+1 

1 

A simple calculation shows that the Frobenius root of A is 2 and the corresponding principal 
eigenvector w = [w;w2]° satis...es a12 = w1=w2. If we normalize the eigenvector w as w°1 = 

+ w2 = 1, we see that w1 = a12--(a12 +1). Thus the eigenvector w in this case equals the binary 
choice probability. The I-projection problem to ...nd the I-projection of the uniform distribution 
onto the binary choice probability constraint is formulated as follows. Let p1 = Pr(12) and 
P2 = Pr(21), where Pr(12), for example, denotes the probability of the ranking 12, i.e., 1 is ranked 
as the ...rst and 2 as the second. Given u = [1=2; 1=2] , ...nd p° such that 

1/2  p ¶ li n 11% 
I (pn; u) = min I (p; u) =min pi log —Pi p 2  log 

; (5) p2K p2K U1 U2 
where K is the convex set of probability distributions satisfying constraints (6). 

pl = a12=(a12 +1) 
pl + P2 = 1 

Apparently, p; = al2=(a12 + 1) so that the I-projection p° in this case is identical tow under any 
positive initial distribution. 
Proposition 1 In the 2 E. 2 case, the Saaty's eigenvector method and the I-projection problem 
under the binary choice probability constraint produce the identical solution. 

Next let us consider the case for the 3 E. 3 positive reciprocal matrix. In the following examples, 
a (A) and w respectively denote the Frobenius root and the corresponding principal eigenvector of 
A. The vector p° denotes the I-projection onto the constraints of binary choice probabilities. Its 
components are lexicographically ordered as follows. 

p° = EP r(123); Pr(132); P r (213); P r (231); P r(312); P r(321)]: 

(6) 

(7) 
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To compare the eigenvector w and the I-projection p°, the I-projection if must be transformed 
into some comparable ratio scale, say z. Here the probability that the i-th object is chosen as the 
top is regarded as its ratio scale zi. 

z = [zi; z3; z31 = [Pr(123) + P r (132); P r(213) + Pr(231); P r (312) + Pr(321)] (8) 

We show two numerical examples below. 
Example 1 2 3 2 3 

1 2 7 0 2=3 7=8 
A = 4 1=2 1 55 P= 4 1=3 0 5=6 5

1=7 1=5 1 1=8 1=6 0 
•(A) = 3:0142 pu = [0:516; 0:115; 0:243; 0:074; 0:035; 0:0161 

Example 2 

w = [0:592; 0:333; 0:075] 

2 3 
1 2 4 

A = 4 1=2 1 2 5
1=4 1=2 1 

s (A) = 3 
w = [0:571; 0:286; 0:143] 

z = [0:632; 0:317; 0:051] 

2 3 
0 2=3 4=5 

P= 4 1=3 0 2=3 5
1=5 1=3 0 

p° = [0:377; 0:211; 0:211; 0:078; 0:078; 0:0441 
z = [0:589; 0:290; 0:121] 

It is interesting to note that solutions to the I-projection problems are close to those of the Saaty's 
eigenvector method. While they are close to each other, they are dinerent even in this cubic 
case. It is instructive to see Example 2 because the matrix A is consistent, i.e., rank A = 1 and 

: : w3 = 1 : (1=2) : (1=4). Even in this consistent case, the solution to the I-projection 
problem is not identical to the principal eigenvector of the consistent matrix. This dinerence waits 
for some explanation and is worth investigating further here. To say the conclusion in advance, the 
following theorem states the condition when the solution to the I-projection problem reproduces 
the Saaty's eigenvector for the consistent case. 
Theorem 2 The I-projection onto the intersection of the binary choice probability constraint (3) 
and the sequential choice constraints (10) reproduces the Saaty's eigenvector for the 3E3 consistent 
reciprocal outcome matrix. 

This theorem asserts that the following I-projection problem (9), in which the sequential choice 
constraints (10) is added to binary choice probability constraints (3), recovers the Saaty's eigen-
vevector in the 3 £ 3 consistent case. 

X 
I (pu; u) = min I (q; u) = min qi log —qi ; (9) 

q2K q2K Ui 

where K is a convex set of probability distributions satisfying the following sequential choice 
constraints (10) in addition to the binary choice probability constraints (3). 

p23(q, + q2) = 
p13(q3.±. q4), „C13
P12(q5 q) 6 = 95

In fact, the next example 3 shows that the I-projection reproduces the Saaty's eigenvector if the 
additional constraints (10) is added to the previous Example 2. 
Example 3 . 2 3 

1 2 4 
A = 4 1=2 1 2 5

1=4 1=2 1 
(A) = 3 

w = [0:571; 0:286; 0:143] 

2 3 
0 2=3 4=5 

P= 4 1=3 0 2=3 5
1=5 1=3 0 

p° = 10:381; 0:190; 0:229; 0:057; 0:095; 0048] 
z = [0:571;0:286;0:143] 

(10) 
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To see why this is so, some choice theoretic considerations are needed. For the purpose, ...rst 
Luce's Theorem must be explained. Lepzfix (x) denote the choice probability that x is chosen from 
X, i.e., Px (x) 0 for all x 2 X and x2x Px (x) = 1. The following condition is the so-called 
1.1.A.(lndependence from Irrelevant Alternatives) condition. This condition is also called the Luce's 
choice axiom. (Luce and Suppes (1965, p.336)) Under 1.I.A. condition, the Luce's theorem holds. 
(Luce and Suppes (1965, Theorem 31, p.336)) 
1.I.A. Condition: A set of choice probabilities de...ned for all the subsets of a ...nite set A is 
said to satisfy the 1.I.A. condition if for all x;Y; and X such that x 2 1' Y2 X Y2 A, it holds that 
PY = Px(xjY) whenever the conditional probability exists. 

Theorem 3 [Luce's Theorem]. If the 1.I.A. condition holds and A is ...nite, then there exists a 
ratio scale u(t) on A such that for any Py (x) ditierent from 0 or 1, 

r,  
Py (X) - 

U(X)

U(Y) 

From this theorem, the strict utility model is de...ned as follows. 
De...nition 1 [Strict Utility Model]. A set of choice probabilities is said to be a strict utitlity model 
if there exists a ratio scale u(t) on A such that for all x 2 Y Y2 A, equation (11) is holds. 

Recall that the Saaty's eigenvector method intends to estimate the decision-maker's ratio scale 
as the principal eigenvector of the positive reciprocal outcome matrix. If we further assume that 
the estimated ratio scale determines all the conditional choice probabilities by (11), the estimated 
ratio scale induces a strict utility model. Under this assumption, the Saaty's eigenvector method 
can be thought of as a method to identify the decision-maker's strict utility model. On the other 
hand, there is another class of probabilistic choice models called random utility models. Let A be 
a ...nite set of objects. Let U(t) be a function on A such that, for each x in A, U(x) is a random 
variable. The vector U = flJ (x) x 2 Ag is called a random vector U on A. 
De...nition 2 [Random Utility Model]. A set of choice probabilities is said to be a random utility 
model if there exists a random vector U on A such that for x 2 V Y2 A, 

Py (X) = P rfU (x) = U (y); y 2 Vg: (12) 

If the components of the random vector U are independent with each other, the random utility 
model is said an independent random utility model. 

It is well known that any strict utility model is an independent random utility model but the 
converse is not true. (Luce and Suppes (1965, p.338, Theorem 32)) With respect to the binary 
choice probability problem, the following theorem due to Block and Marschak (1960) is important. 
(Luce and Suppes (1965, p.352, Theorem 49)) Let A = fl; 2;:::; ng and let S denote the set of all 
n1 linear orders of A. Thus R 2 S is a particular ranking of A, and xRy means that x precedes y 
in R. For x 2 Y Y2 A, let S(x;Y) = fR 2 SjxRy for all y 2 Y nfxgg = fR 2 Sjx precedes y for 
ally 2 Y nfxg in Rg: 
Theorem 4 [Block and Marschak (1960)] A set of choice probabilities Py, 1/2 A is a random 
utility model if and only if there exists a probability distribution p on S such that for x 2 Y Y2 A, 

X 
Py (x) = p(R): (13) 

R2S(x;Y) 

The solution of I-projection problem under binary choice probability constraints is a probability 
distribution on S so that if we de...ne the choice probabilities by (13), we obtain a random utility 
model. Obviously, the solution conforms to given binary probabilities. Thus, by solving the [-
projection problem, we have obtained a random utility model which induces given binary choice 
probabilities. 
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The point is that the strict utility model and the random utility model are dinerent. As to this 
point, the following theorem also due to Block and Marschak (1960) should be noted. This theorem 
speci...es the condition that a random utility model becomes a strict utility model and vice versa. 
(Luce and Suppes (1965, p.354, Theorem 50)) The theorem introduces another familiar notion of 
sequential choice. A particular ranking can be seen to be obtained from the sequential choice in 
which the ...rst one is selected among all alternatives, the second is selected as the top among the 
remaining alternatives, and so forth. Let A and S 'be as above. For R 2 S, let R1 denote the 
element of A that is ranked as the i-th. Let p be a probability distribution over S and Py (x) 
denote the choice probability that x 2 A is selected from Y Y2 A. 

13(R) = PA(R1)PAnfRig(R2):::PfRni 1;Rng(Rni 1): (14) 

Theorem 5 [Block and Marschak (1960)] If a set of choice probabilities Py, Y Y2 A is a strict 
utility model, then them exists a probability distribution p on S such that p and Py satisfy both 
equations (13) and (14). Conversely, if there exist p and Py that satisfy both equations (13) and 
(14), then the set of choice probabilities Py. V Y2 A is a strict utility model. 

From this theorem, it is conjectured that the additional sequential choice constraints (14) must 
be added to the binary choice probability constraints for the I-projection problem to have the 
same solution as the Saaty's eigenvector. This conjecture is true as stated in Theorem 2. The 
constraints (10) are derived from equation (14). When A = f1; 2; 3g and n = 3, the equation 
(14) is expressed as p(a1a2a3) = PA(al)PAnra,g(a2) where al ; a2; a3 2 A. Since PAnfai g(a2) is 
equivalent to Pfa2;a3g(a2), it is just'a binary choice probability. From this, the ...rst equation in 

- 

(10), for example, is derived as follows: 

Pr(123) = (11 = - Pri;2;39(1)Pf2;3g(2) = (Pr(123) + Pr(132))1323 = (q, + q2)p23: 

Now let us"- consider Example 4. This example shows that the I-projection problem is not always 
solvable. 
Example 4 . 2 3 2 3 

1 1=3 3 0 1=4 3=4 
A = 4 3 1 1=35 P = 4 3=4 0 1=4 5

1=3 3 1 1=4 3=4 0 
• (A) = 4:333 No solution. 
w = [0:333; 0:333; 0:333] 

The reason why Example 4 has no solution is closely related to the so-called triangle inequality 
condition. The triangle inequality for binary choice probabilities fpu g is de...ned as follows. 
Triangle Inequality: For any distinct i;j; k 2 f1; 2; :::; ng; 

PO 1- k Pki 2: (15) 

In the present 3 E. 3 case, it is easy to check that the triangle inequality is the necessary and 
suitcient for the binary choice probability problem to have a solution. In the above Example 4, 
the triangle inequality does not hold, i.e., p13 + p32+ Pzi = 3=4 + 3=4 + 3=4 -= 9=4 > 2: Now I give 
the proof of Theorem 2. 
Proof: Let wi denote the ratio scale for the i-th object, whose sum is normalized to 1, i.e., 

+ w2 + w3 = 1. Since the consistent reciprocal outcome matrix (au) satis...es ag = , binary 
choice probabilities are expressed as pu — . Solving equation (3) of binary choice probability 
constraints for qi; q2; (13; q6 gives the following equation (16). 

ql =Pi2 P23l p13 cia i 95 
112 = P13 i P23 ±q4 

q3 = P13 i P12 ÷ q5 
q6 = 1 i P13i q4i q6 

(16) 
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Substituting (16) into (9), the ...rst order condition for I-projection problem in the cubic case is 
obtained as follows. 

3 

log 3 V: C - =0 

Ion = 0:t qqe V-1,5 
(17) 

From 2u- = -v2I- the sequential choice constraints (10) become equivalent to Pp rr (( = 
P.1 

'a. L s"!l- and a = Substituting these expressions for q4 and q5 into (16) and solving for q6 w3 , - W3 ,,./2 • 
gives cis = Then q5 = a-. Thus q5 + (16 = w3. Similarly, + q2 = and q3 + (14 = w2 
hold. Note that the ...rst order condition (17) has not been used. Hence if the given binary choice 
probablties satisfy the triangle inequality, binary choice and sequential choice constraints uniquely 
determine the I-projection. Q.E.D. 

A choice theoretic validation for Saaty's eigenvector method 

A key point of Saaty's eigenvector method is the presumption that the inconsistency is captured 
by the residual matrix E = ("a) = (au wi =w1), where the matrix A = (au) is the outcome positive 
reciprocal matrix and w = (5/1) is the principal eigenvector. Here I discuss this topic on the 
inconsistency represented by the residual error terms in Saaty's method. To tell the truth, the 
matrix A in Example 4 is a typical instance of the residual matrix for Saaty's eigenvector method. 
This is known from the following proposition due to DeTurck (1987). Saito (1998) gives its proof 
from the viewpoint of permutation group. This proposition also is deeply related to the necessary 
and suitcient condition that the right and the left eigenvector are mutually reciprocal for a positive 
reciprocal matrix. For details, see Saito (1998). 
Proposition 6 In the 3E3 case, the only possible structure of the residual matrix is the following. 

2 3 2 3 1 " 1 12 13 2 - 1 "2, 6 = 4 5 (18) 13 1 1 • 1 1 
a 13 23 

The essential point of Saaty's eigenvector method is that the residual matrix contributes nothing to 
the estimated ratio scale.This is because the residual matrix equals the scalar multiplication of a (A) 
and a stochastic reciprocal matrix so that its right eigenvector is proportional to 1. Furthermore, 
in the 3 £ 3 case, its residual becomes a scalar multiple of reciprocal doubly stochastic matrix as 
seen from the above theorem so that the left eigenvector also is proportional to 1. This gives rise 
to a question: Does the I-projection problem for the residual matrix reproduce the same ratio scale 
as proportional to 1? The next example gives an airrmative answer to this question. The matrix 
A in Example 5 is the residual matrix for Example 1. 
Example 5 2 

1 90:333 
(-0:592 

A = 4 o:592 1 ?Ha 1 0-333 7 0.075 50:075 

• (A) = 3:0138 
w = [0:333; 0:333; 0:333] 

70:075 

0:333 
1 

3 2 
0 

5 p = 4 1
2.125 

1:125 
2:125 

0 
1 

2.125 
2:125 

0 
pu = [0:196; 0:137; 0:137; 0:196; 0:196; 0:137] 

z = [0:333; 0:333; 0:3331 
This result holds for the solvable 3£ 3 case. I have not known whether this is true even in the caSe 
of higher dimensions greater than 3. Though limited only to a 3 £ 3 case, this fact gives another 
theoretical validation for Saaty's eigenvector method from the choice theoretic perspective. I state 
this fact as a theorem. 
Theorem 7 [Saito (1998)1 Consider the 323 residual reciprocal matrix with the form (18). De...ne 
binary choice probabilities fpu : i 6=jg, 1 • ij • 3 with pu +pp = 1 by 

' • + P12 = P23 = r a 11:13 (19) + 1' 
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Suppose 2P12 P13. Then, the solution q° of the l-projection problem with the initial uniform 
probability distribution under the binary choice probability constraints (19) is given as follows. For 
1' 3 • P12 2=3, 

q7(123) = 

q7(213) = 

4(312) = 

1 ,, 2 
P121 5: q2 (132) = 51 p./2; 

2 1 
.a• I P12:q7(231) = pl2 i a; 

1 a , 2 
P121 5: %OM = '5 I P12: 

(20) 

The probability that each alternative is selected as a top ranked is 1. Furthermore, the probability 
that each alternative is chosen as the second and as the last also are 

Proof. The optimal conditions for the I-projection problem are (16) and (17). From (16) and 
(17), we have 

n C11C16 1114 _ 
q1 = 2P121 P131 y2 = P13 1 p12± - ; 

112 q3 q2 
_ qlq6 (Figs q 6 q3 = P131 P12 1" = j P131 7 -  , lq • 

C13 42 43 
From the second and the third equations, we get q2 = q3. With q2 = (13, the ...rst and the last 
equations give Eh = p13 i 2q2; and q6 = 1 + p13 i 2p12 i 2q2: Substituting these into the second 
equation leads to 3q (3(P13 I P12) + 2)q2 ± p130 + P13 1 2P12) = 0 . This is equivalent to 

+ q2)(3(qi + q2) I 1) = 0: A simple calculation derives (20). Q.E.D. 

The above result implies that no "partial" information is contained in the residual matrix in the 
sense that I-projection solution for the residual makes no "partial" contribution to the probability 
how each object is ranked among three. Hence Theorem 7 gives another choice theoretic validation 
for Saaty's eigenvector method. 

Theorem 7 also says that if 2p12 p13, the solution for 1=3 • p12 • 2=3 is given by (20). In terms 
of a, this means 1=2 • a • 2. If a < 1=2, the I-projection problem has no solution. While the 
Saaty's eigenvector method interprets the residual matrix as some inconsistency in the pairwise 
comparison process, this inconsistency may be accrued to two causes: (i) the probabilistic choice 
of nl linear orders which are individually consistent; (2) the existence of cycles or nontransitive 
preferences. We may regard the range 1=2 a • 2 as a threshold of inconsistency that can be 
captured by the probabilistic mixtufe of consistent linear orders. Hence we can consider that the 
inconsistency with the range < 1=2 should be captured by the existence of nontransitive or cyclic 
preferences. 

This interpretation suggests the introduction of cycles or nontransitive preferences into the previous 
I-projection problem under binary choice probability constraints. Thus we are led to drop the axiom 
of transitivity in the linear order R. This is equivalent to assuming that (i)” xRx for every x 2 R 
and (ii) for every x; y 2 R, either one of xRy or yRx holds. In the 3E3 case, we can add two cycles, 
(123) and (132) to 3! linear transitive orders. Hence the I-projection problem is now to obtain the 
probability distribution not on 3! linear transitive orders but on 8(= 3! + 2) order relations. 

In the next Example 6, the two cycles, (123) and (132) are included in the I-projection problem 
for the previous Example 4 under the constraints of three binary choice probabilities, p12; p13, and 
P23. Note that Example 4 is unsolvable without introducing cycles. Here the last two components 
of p° correspond respectively to PrE(123)] and Pr[(132)]. The components of vector v denote the 
respective probabilities of linear order and cycles. 
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Example 6 
2 3 2 3 

1 1=3 3 0 1=4 3=4 
A = 4 3 1 j=35 P = 4 3=4 0 1=4 5

1=3 3 1 1=4 3=4 0 
• (A) = 4:333 p° = [0:047; 0:141; 0:141; 0:047; 0:047; 0:141; 0:016; 0:4221 
w = [0:333; 0:333; 0:333] z = [0:188; 0:188; 0:188] 
v = [linear; cycle] = I0:562;0:438] 

Surprisingly, the conditional probability that each alternative is selected as a top among 31 linear 
orders still turns out to be the uniform distribution. This topic is worth investigating further. 
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