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Abstract: A previous paper showed that when concordant the supermatrix undoes the 
eigenvector normalizations required by All?, and therefore, that the supermatrix (and hierarchic 
composition) can be avoided by not normalizing in the first place. 
discordance, and shows that while the previous results hold under appropriately scaled 
concordance under discordance even the supermatrix approach can give arbitrary results. 

Introduction 

The supermatrix approach is cited by proponents of AHP as the quintessential approach, which under 
certain circumstances, can be reduced to hierarchic composition (Harker and Vargus, 1987) (Saaty, 
1980). A previous paper (Schenkerman, 1994b) showed that under concordance the supermatrix 
approach achieves its results by undoing the eigenvector normalizations required by AHP. As the 
conventional weighted-sums approach ensues, the supermatrix (and hierarchic composition) can be 
avoided by not normalizing in the first place. (This is true also for some proposed variants of ARP. See 
(Schenkerman, 1994a).) 

This paper develops the notion of concordance (supermatrices based upon appropriately scaled objective 
absolute measurements and some based upon subjective relative measurements), and the notion of 
discordant supermatrices (all others). It shows that under appropriately scaled concordance the 
supermatrix approach gives correct results, but under discordance the supermatrix approach can yield 
arbitrary results. 

This paper offers a brief background on supermatrix theory and the theory's main conclusions concerning 
so-called "independent" criteria weights and overall priorities. Then it provides definitions of and 
distinctions between concordance and discordance and presents the foregoing assertions as propositions 
(which are proved in the Appendix). Next it presents a nonpreemptive linear goal program (LOP) for 
determining concordance/discordance under relative measurements (since under absolute measurements 
concordance is automatic) and provides examples of both concordance and discordance. It also discusses 
false concordance and illustrates the effect of unequal LOP objective-function weights under discordance. 
(Under concordance there is no effect.) Finally, it addresses the need for appropriate scaling of the 
underlying measurement matrix. 

Background on Supermatrices 

Let X = (x11) be an nxm matrix where 1E.. is the absolute measurement of Alternative i on Criterion j. 
Without loss of generality, two scalings are assumed. The first scales the columns of X so the marginal 
rates of substitution (mrs) between every pair of columns (every pair of criteria) is one. The second 
scales all xii so the overall sum, Euxu, equals one. (The need for these scalings will be addressed later.) 
Let c. = £.x.. be the sum of Column j, and r. = Ex.. the sum of Row i (which is valid by the equal-mrs 
scaling). Le c be the vector (... c „J. and i• be die vector (... t ...)1. By the second scaling above, the 
components of each vector sum to one. 

Let A = (au) be the am matrix whose elements are a,. = xJc., i.e., are column normalized. Let B = 
1(bii) be the mxn matrix whose elements are b. = xii/ri,1 i.e., kl are also column normalized. Since each of 
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their columns sums to one, A and B are column stochastic. (These expressions for aij and bji follow from 
their respective pairwise-comparison matrices, which by virtue of X are consistent.) 

A is the matrix of relative scores of the alternatives with respect to the criteria and B the matrix of 
relative scores of the criteria with respect to the alternatives. Ordinarily, the alternatives are independent 
of each other as are the criteria. Then, the square supermatrix, W, is 

0 

A 

Multiplying W by itself an odd number of times yields 

w2k+1 
0 

0  I . 
B(AB) k 

A(BA) k 0 

For k sufficiently large the colnnins of B(AB)k become identical as do the columns of A(BA)k. 
Supermatrix theory holds that each column of B(AB) k is the vector of independent criteria weights which, 
if premultiplied by A would yield the overall priorities without resorting to the supermatrix, i.e., would 
yield the overall priorities by hierarchic composition directly. Supermatrix theory also holds that each 
column of A(BA)" is the vector of overall priorities. Note that each column of (BA)" equals each column 
of B(AB)k. 

Concordance vs Discordance 

With absolute measurements in X, the matrices A and B can be derived from X (either directly or from 
objective pairwise-comparison matrices). In the absence of absolute measurements, i.e., for relative 
measurements, there is no measurement matrix X and A and B must be developed from pairwise-
comparison matrices assessed by the decision maker (DM) subjectively. In the former case it is possible 
to regenerate X (within a constant of proportionality) from A and B. The regenerated X allows 
derivation of that same A and that same B. In the latter case, it is possible to compute an induced X 
from A and B, but the A and B derived from the induced X may not be that used to induce X. 

DEFINITION 1.Matrices A and B, and hence the supermatrix comprising them, are concordant if and 
only if the matrix X they induce yields that same A and that same B. Otherwise, they are discordant. In 
particular, a.. = x../c. and b.. = x. It if and only if A and B are concordant. 

Ii 11 1 p I 

Thus, concordance implies compatibility (but not cross-determinability) between A and B; discordance, 
lack of compatibility. It follows that A and B derived from an X determined from absolute 
measurements will be concordant. Those developed from relative measurements can be discordant. The 
importance of the distinction lies in the following propositions: 

PROPOSITION 1. Under concordance the supermatrix approach works by undoing normalization of 
the eigenvectors in A. Specifically, each column of (BA)k and of B(AB)k is the vector c, the normalized 
column sums of X; each column of A(BA)" is the vector of overall priorities, r. Indeed, the supermatrix 
can be avoided entirely since r can be more easily computed from X directly as the vector of normalized 
row sums. (See (Schenkerman, 1994b).) 

PROPOSITION 2. If A and B are concordant the supermatrix approach gives the correct overall 
priorities in respect to the underlying X matrix. (Proof in Appendix.) 

PROPOSITION 3. If A and B are discordant the supermatrix approach gives arbitrary overall 
priorities. (Proof in Appendix.) 
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What about the simpler approach known as hierarchic composition? In (Schenkerman, 199413) it is 
shown that hierarchic composition is not just a special case of the supermatrix approach, but a very 
special case. With a concordant supermatrix even hierarchic composition is unnecessary. Indeed, if X is 
known it is not necessary to determine A or B; the overall priorities can be computed from X directly. If 
X is not known, but can be induced from concordant A and B matrices, the overall priorities can be 
computed from the induced X; indeed, they are computed in the process of determining whether A and B 
are concordant or discordant (see next section). Finally, with a discordant supermatrix, the supermatrix 
approach (and therefore hierarchic composition) can give arbitrary results. 

Determining Concordance Under Relative Measurements 

As indicated in Proposition 1, under absolute measurements r, the overall priorities of the alternatives, 
can be computed directly from the matrix X. There is no need for computing A or B. Under relative 
measurements, however, X is not directly available--A and B are elicited from subjective pairwise-
comparison matrices. Thus, neither c nor r is available. How then can the concordance or discordance 
of A and B be determined? 

Actually, it is relatively simple. A nonpreemptive linear goal program (LGP) can be used. If the 
objective-function value of the LGP can be made zero, A and B are concordant; otherwise they are not. 
In the process, X (with both scalings), c, and r are determined. 

Letting Et, E;., 61., and &;. be nonnegative deviational variables, xi. the elements of the X matrix induced from A 
and B, and (I) the cOlumn (row) sums from the induced X, the LGP is 

subject to 
Min Z = E..(et + e. + + &I) 3.1 

ae. - x.. - + = 0, all i, j 131 

b_r - - Et- + a:. =0, all j 
1'' U 

Eixu - cj = 0, all j 

- = 0, all i 
1 11 I 

Ee. - Es. = 0 
1 I1 

Ec. = 1 
11 

all . .x 1 e. ., S. ., 2-3 , c nnegative. 2.3 3 , r o n

Equation (5) forces equal-mrs scaling of the columns (criteria) of the induced X. Although (6) is 
redundant, since it follows from (4) and (5), it clarifies the relationship between column and row sums. 
Equation (7) scales c (and indirectly r and X) so the elements sum to one. 

If Z can be made zero all deviational variables can be made zero and X, can be induced from A and B 
without error. Then A and B are concordant, c is the vector of independent criteria weights, and r is the 
vector of overall priorities. 

If Z cannot be made zero some deviational variables remain positive and X cannot be induced from A 
and B without error. A and B are discordant. Then, from Proposition 3, the supermatrix approach, and 
consequently hierarchic composition, are invalid. 

Notice that all deviational variables are equally weighted in the LGP's objective function, (1). If Z can 
be made zero the weights of the deviational variables are immaterial (so long as they are positive). In 
contrast, if Z cannot be made zero the weights of the deviational variables affect the value of Z. This is 
not a problem, however, since what matters is the fact that Z and hence all deviational variables cannot 
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be made zero. The actual values of Z and the nonzero deviational variables are irrelevant—the fact of 
nonzero shows the discordance of A and B. 

Example 1. 

As an example of concordant matrices consider the example in (Harker and Vargas, 1987, pp. 1396-
1398), also used in (Schenkerman, 199413, pp. 5-8). The absolute-measurement matrix X and the derived 
A and B matrices are given in Exhibit la. From (Harker and Vargus, 1987), the columns of X are 
scaled for equal marginal rates of substitution, but for simplicity, overall scaling (dividing all X entries 
by the overall sum, 70) has not been done. The X matrix has been augmented to show the column, row 
and overall totals and the normalized column and row sums. As shown in (Harker and Vargus, 1987) 
and (Schenkerman, 1994b), (both directly and using the supermatrix approach) the normalized row sums, 
ri, are the overall priorities and the normalized column sums, c, the independent criteria weights. 

The LGP using the derived A and B matrices is shown in the LINDO model of Exhibit MI (following 
the Appendix), whose solution is given in Exhibit lb. Though not shown, the values of the objective 
function and all deviational variables are zero. Since, as is shown, the induced X matrix is the same as 
the measurement matrix X in Exhibit la, new A and B matrices derived from the induced X matrix will 
be the same as those used in the LGP model (the matrices in Exhibit la). Thus, A and B are concordant 
(as would be expected, being derived from X). Therefore, the c and r vectors are computable using the 
supermatrix approach, or the LGP, or directly from X. (When X is available, the last approach is the 
simplest.) 

Example 2. 

As an example of discordant matrices consider the example in (Harker and Vargus, 1987, p. 1400) 
(which is also discussed in (Schenkerman, 1994b, pp. 8-9)). The A and B matrices and the supermatrix 
solution from (Harker and Vargus, 1987) are shown in Exhibit 2a. A and B were not derived from an X 
matrix, but developed from subjective painvise-comparison matrices. In particular, from (Harker and 
Vargus, 1987, p. 1400), "... the weights for the three criteria are given exogenously; i.e., these weights 
are formed independently of the two alternatives." (The statement itself portends that A and B will be 
discordant.) 

The LINDO model for this example is shown in Exhibit M2 and its solution in Exhibit 2b. The values of 
the objective function and some deviational variables. are positive—proof that A and B are discordant. 
Indeed, the independent criteria weights, ( . 3 . . 5 . . 2) , and the overall priorities, (.5, .5) , disconfirm 
those given by the supermatrix approach. 

Fxbibit 2c shows the induced X matrix and the derived A and B matrices. Since these derived matrices 
differ from the original matrices in Exhibit 2a, the original A and B matrices are discordant. 

False Concordance. If the A and B matrices of Exhibit 2c were used in the LGP (Exhibit M3) the 
resulting solution (Exhibit 3) would agree with Exhibit 2b, except the values of the objective function and 
all deviational variables would be zero. This reveals that A and B matrices derived from even an 
induced X are concordant. In this case, however, this is a false concordance: these are not the A and B 
matrices given originally (which presumably were developed from pairwise-comparison matrices assessed 
by the DM subjectively). Were the derived A and B matrices the same as those given originally, true 
concordance would obtain. 

Unequal Objective-Function Weights. Finally, to illustrate the arbitrariness of results obtained from 
discordant A and B matrices, consider Exhibit M4 which gives the model for Example 2 (Exhibit M2) 
with unequal objective-function weights. For those deviational variables positive in the solution of 
Example 2 (Exhibit 2b), the objective-function weights have been increased to 10. 

The solution in Exhibit 4 is not the same as in Exhibit 2b, the solution with equal objective-function 
weights. It can be verified that the A and B matrices derived from this induced X matrix differ from 
both the original A and B matrices and from those derived from the X induced with equal objective-
function weights. Thus, if A and B are discordant, arbitrary objective-function weights yield arbitrary 

559 



induced X and derived A and B matrices. In consequence, if A and B are discordant the "overall 
priorities" and "independent criteria weights" given by the supermatrix approach are arbitrary. In 
contrast, with concordant A and B matrices the LGP results are independent of the objective-function 
weights and confirm the results given by the supermatrix approach. 

Exhibit la X Matrix and Derived A and B Matrices for Example 1 

Crit1 Crit2 Crit3 Crit4 Ri ri

Alt1 1 9 1 3 14 .200000 
Alt2 9 1 9 1 20 .285714 
Alt3 8 1 4 . 5 18 .257143 
Alt4 4 1 8 5 18 .257143 

A 

C. 22 22 12 22 14 70 
c. .314286 , .171429 .314286 .200000 

1/22 9/12 1/22 3/14 
9/22 1/12 9/22 1/14 
8/22 1/12 4/22 5/14 
4/22 1/12 8/22 5/14 

3= 

1 

1114 9/20 8/18 4/18 
9/14 1%20 1/18 1/18 
1/14 9/20 4/18 8/18 
3/14 1/20 5/18 5/18 

Exhibit lb LGP,Solation for Example 1 

Variable Dec. Value Fraction 

X11 .01428'6 1/70 
X12 :128571 9/70 
X13 .014286 1/70 
X14 .042857
X21 .128571 9/70 
X22 .014286- 1%70 
X23 .128571 L9/70. 
X24 .014286 1/70 
X31 :114286 f"8/70 
X32 ,014286 1%70 
X33 .057143 '4/70 
X34 .071429 5/70 
X41 .057143 4/70 
X42 .014286 1/70 
X43 .114286 8/70 
X44 ,071429 5/70 
Cl .314286 22770 
C2 .171429 '12170 
C3 .314286 22/70 
C4 .200000 14/70 
R1 .200000 14/70 
R2 .285714 20/70 
R3 ,257143 18/70 
R4 .257143 18/70 
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Exhibit 2a A and B Matrices and Supermatrix Solution for Example 2 

[ 

0.5 0.4 0.8 
A = 0.5 0.6 0.2 j B = 

2k+1 W • = 

0.3 
0.4 
0.3 

0.3 
0.4 
0.3 

O 0 0 0.3 0.3 
O 0 0 0.4 0.4 
O 0 0 0.3 0.3 

0.55 0.55 0.55 0 0 
0.45 0.45 0.45 0 0 

Exhibit 2b LGP Solution for Example 2 

Objective Value = .220000 

EP13 .010000 
EM23 .010000 
DM22 .100000 
0P23 .100000 
X11 .150000 
X12 .200000 
X13 .150000 

�  X21 .150000 
X22 .300000 

I t X23 .050000 
t Cl .300000 

C2 .500000 
C3 .200000 
R1 .500000 
R2 .500000 

Exhibit 2c A and B Matrices from Induced X Matrix 
4' 

][ 

0.15 0.20 0.15 
X = 0.15 0.30 0.05 

[ 

0.50- 0.40 .0.75 -
A = 0.50 0.60 0.25 B = 

030 0.30 
0.40 0.60 
0.30 0.10 

561 



Appendix 

Proof of Proposition 2 

With X known (and equal-mrs scaled), either from absolute measurements or induced from concordant A 
and B matrices (e.g., using the LGP), r, the vector of normalized row sums, is the vector of overall 
priorities and c, the vector of normalized column sums, is the vector of independent criteria weights. 
Therefore, it is necessary to show that W2k+i gives r in the southwest partition and c in the northeast 
partition. 

Since, if A and B are concordant (and equal-mm scaled) Nei = xii = bjiri, summing on j yields Ejaijci — 
r and summing on i yields E th.b..r. = c.. From e definitions of the column vectors c and r we have 1 31 1 3

Ac = r and Br = c, (Al) 

where r is the stochastic vector of overall priorities and c the vector of independent criteria weights. 
Therefore, 

BAc = c and ABr . = r. (A2) 

Thus, c is the stochastic eigenvector of BA and r is the stochastic eigenvector of AB, both eigenvectors 
corresponding to the eigenvalue one. 

It is well known that starting with a positive vector 14:1) the eigenvector of G corresponding to the 
eigenvalue one is given by Y = GkY(c)), for k sufficiently large. Now let G BA and consider the 
southwest partition of the supermatrix W2k+1. Gk can be written as Gk-1G. In other words 

it = [... = G. ...]. (A3) 

Since each column of G is positive and stochastic, for k sufficiently large each column of GÌ  is the 
stochastic eigenvector of G corresponding to the eigenvalue one; that is, each column of (BA)" is c. 
Thus, from (Al), each column of MBA)" is Ac = r, as was to be shown. 

Similarly, it can be shown that each column of (AB)k in the northeast partition of the supermatrix W2k+1
is the stochastic eigenvector r. Thus, from (Al), each column of B(AB)k is Br = c, as was to be shown. 

Proof of Proposition 3 

If A and B are discordant a c + e = x = b r + 5 where c.;- x.., and r. are variables and Er and 3.. are . ti .1 it _ft  it i o' 1 U . 1 u error terms not all of winch are zero. Without loss of generality, m addition to equal-mrs scaling, the xi]
are assumed scaled so E..x.. = 1. Then, E c. = 1 t= Eiri. Now summing on i yields 

IJ kJ i 1 

Eiaijcj + Eieij = Ex. = cj = Eibjiri + Ei5ij, (A4) 

where, since E.a.. = 1, Etc.. = 0. SummiUg on j yields 1 u t u

Ejauci + Ejeij = Ejxij = Ejbjiri + Ejaii, (A5) 

where, since Ellis  = 1, Eibij = 0. It follows that 

Ac + El = r and Br + = c, (A6) 

where e = (eij), S = 0.1 and earth instance of 1 is a one (sum) vector of appropriate order. Therefore, 

BAc + Bel + = c and ABr + el + Ab.1 = r. (A7) 

As shown in the Proof for Proposition 2, raising the supermatrix to a sufficiently high odd power, 2k +1, 
gives the (stochastic) eigenvector of BA, say q, for each column of (BA)1' and gives the (stochastic) 

• 
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eigenvector of AB, say p, for each column of (AB)1' (both q and p corresponding to the eigenvalue one). 
This gives q for each column in the northeast partition of W2k44 and p for each column in the southwest 
partition. Thus, q and p are properties of the supermatrix, while c and r (which the DM is seeking) are 
properties of the underlying X matrix. 

From (Al), c is the eigenvector of BA, q, and r is the eigenvector of AB, p, if and only if 

Bel + 81= 0 and El + Ab.1 = 0, (A8) 

where each instance of 0 is a null vector of suitable order. Of course, (A8) occurs automatically under 
concordance (where all error terms are zero), but it may also occur under discordance (where some 
error terms are nonzero). For instance, (A8) Occurs if some error terms are nonzero but 

= 0;81=0:  EjEjj = 0, all i; EA, = 0, all j. (A9) 

Now AHP's basic subjective pairwise-comparison matrices (alternatives on criteria, which yield the A 
matrix, and criteria on alternatives, which yield the B matrix) are surrogates for an implied measurement 
matrix, X (within a multiplicative constant). Whereas (A8) holds under concordance because A and B 
matrices agree on the unique (see below) underlying X matrix, no pair of discordant A and B matrices 
agrees on any X. Rather, every pair of discordant A and B matrices estimates (with nonzero error) an 
infinite number of X matrices (differing by more than a scale factor). In particular, as discussed in 
connection with the discordant LGP, different objective-function weightings yield different X matrices 
and therefore generally different c and r vectors (as would different objective functions, such as 
minimizing mean-square error and minimizing maximum error). Yet even though A and B cannot agree 
on an underlying measurement matrix, the discordant-supermatrix approach arbitrarily excludes all X 
matrices except those for which (A8) holds, i.e., for which c happens to equal q and r happens to equal 
p. Under discordance the supermatrix approach ignores the existence of all X matrices with c # q and r 

p, some of which may provide a lower overall error and be more preferred by the DM than any not 
excluded. Therefore, as was to be shown, for discordant matrices the supermatrix approach yields 
arbitrary overall priorities. 

Observation 

Although the foregoing did not rely on it, the trivial solution, (A9), is the only solution for which (A8) 
holds. Eliminating 811 from the first equation in (A8) and el from the second yields 

(AB - 1)E1 = 0 and (BA - 1)b.1 7 0, (A10) 

where each instance of I is a suitable identity matrix. Thus, for nontrivial solutions to exist for (A8) El 
must be an eigenvector of AB and 81 must be an eigenvector of BA. Now, since A and B are positive 
matrices, AS and BA. are also positive matrices, and by Perron's Theorem (Saaty, 1980, Theorem 7-4, 
p. 170) all components of the principal eigenvectors of AB and BA must be positive. Thus, the sums of 
each eigenvector, 1 El and lbi 1 must be positive., But, as discussed in connection with (A4) and (A5), 
1 c = 0 and 18 = 0. Therefore, since 1€l and 181 are zero, el and 81 cannot be nontrivial in (A10), 
but must be the trivial solutions in (A9). 

Uniqueness of Induced X Matrix Under Concordance 

It is to be shown that under concordance the induced X matrix is unique to within a scale factor. 
Recalling that LGP scales the induced X so Ei.xi. = 1, assume X is not unique. Then there exists a 
similarly scaled matrix Y = (y..) with column sums g and row sums t.. Since A and B are concordant, a 
a..g. = yij = b..t., which in turn implies 

kJ it 

Ag = t and Bt = g so BAg = g and ABt = t. (All) 

As BA and AB are positive, by Perron's Theorem (Saaty, 1980, Theorem p. 170), the principal 
eigenvectors of BA and AB are unique (to within a scale factor). Since 1 g = it = 1, g = c and t = r. 
Then, a..c. = y.. = b..r., and y = xij, as was to be shown. 

13 3 13 31 I ij 
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Exhibit Ml LINDO Model for Example I 

MIN EP11 + EM11 + EP12 + EM12 + EP13 + EM13 + EP14 + EM14 
+ EP21 + EM21 + EP22 + EM22 + EP23 + EM23 + EP24 + EM24 
+ EP31 + EM31 + EP32 + EM32 + EP33 + EM33 + EP34 + EM34 
+ EP41 + EM41 + EP42 + EM42 + EP43 + EM43 + EP44 + EM44 
+ DP11 + DM11 + DP12 + DM12 + DP13 + DM13 + DP14 + DM14 
+ DP21 + DM21 + DP22 + DM22 + DP23 + DM23 + DP24 + DM24 
+ DP31 + DM31 + DP32 + DM32 + DP33 + DM33 + DP34 + DM34 
+ DP41 + DM41 + DP42 + DM42 + DP43 + DM43 + DP44 + DM44 

ST 
2) - 22 EP11 + 22 EM11 + C1 - 22 X11 = 0 
3) -12 EP12 + 12 EM12 + 9 C2 -12 X12 = 0 
4) - 22 EP13 + 22 EM13 + C3 - 22 X1'3 = 0 
5) -14 EP14 + 14 EM14 + 3 C4 -14 X14 = 0 
6) - 22 EP21 + 22 EM21 + 9 Cl -21 X21 = 0 
7) - 12 EP22 + 12 EM22 + C2 - 12 X22 = 0 
8) -22 EP23 + 22 EM23 + 9 C3 -22 X23 = 0 
9) - 14 EP24 + 14 EM24 + C4 - 14 X24 = 0 
10) -22 EP31 + 22 EM31 + 8 Cl- 22 X31 = 0 
11) - 12 E232 + 12 EM32 + C2 - 12 ;32 = 0 
12) - 22 E233 + 22 EM33 + 4 C3 -22 X33 = 0 
13) -14 EP34 + 14 EM34 + 5 C4 -14 X34 = 0 
14) -22 EP41 + 22 EM41 + 4 Cl- 22 X41 = 0 
15) - 12 EP42 + 12 EM42 + C2 - 12 X42 = 0 
16) -22 EP43 + 22 EM43 + 8 C3 -22 X43 = 0 
17) -14 EP44 + 14 EM44 + 5 C4 -14 X44 = 0 
18) - 14 DP11 + 14 DM11 - 14 X11 + R1 = 0 
19) -14 DP12 + 14 DM12 -14 X12 + 9 R1 = 0 
20) - 14 DP13 + 14 DM13 - 14 X13 + R1 = 0 
21) - 14 DP14 + 14 DM14 - 14 X14+ 3 R1 = 0 
22) -20 DP21 + 20 DM21 - 20 X21+ 9 R2 = 0 
23) - 20 DP22 + 20 DM22 - 20 X22 + R2 = 0 
24) -20 DP23 + 20 DM23 -20 X23 + 9 R2 = 0 
25) - 20 DP24 + 20 DM24 - 20 X24 + R2 = 0 
26) -18 DP31 + 18 DM31 - 18X31 + 8 R3 = 0 
27) - 18 DP32 + 18 DM32 - 18 X32 + R3 = 0 
28) -18 DP33 + 18 DM33 -18 1(33 + 4 R3 = 0 
29) - 18 DP34 + 18 DM34 - 18 1(34 + 5 R3 = 0 
30) -18 DP41 + 18 DM41 -18 X41 + 4 R4 = 0 
31) - 18 DP42 + 18 DM42 - 18 X42 + R4 = 0 
32) - 18 DP43 + 18 DM43 - 18 X43 + 8 k4 = 0 
33) - 18 DP44 + 18 DM44 - 18 X44 + 5 R4 = 0 
34) - Cl + X11 + 1(21 + X31 + X41 = 0 
35) - C2 +1(12 + X22 + X32 + X42 = 0 
36) - C3 + X13.+ 1(23 + 1(33 + 1(43 = 0 
37) - C4 + X14 + X24 + 1(34 + X44 = 0 
38). X11 + X12 + X13 + X14 - R1 = 0 
39) X21 + X22 + X23 + X24 - R2 = 0' 
40) X31 + X32 + X33 + X34 - R3 = 0 
41) X41 + X42 + X43 + X44 - R4 = 0 
42) Cl + C2 + C3 + 64 - R1 - R2 - R3 - R4 = 0 
43) Cl + C2 + C3 + C4 = 1 

C • • EPij = eij, EMij = DPi.j DMij = 
13 13' 13' 

Xij x.., Cj =c , Ri = .ri
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Exhibit 162 LINDO Model for Example 2 

MIN EM11 + EP11 + EM12 + EP12 + EM13 + EP13 
+ E1421 + EP21 + EM22 + EP22 + EM23 + EP23 
+ DM11 + DP11 + DM12 + DP12 + DM13 + DP13 
+ DM21 + DP21 + DM22 + DP22 + DM23 + DP23 

ST 

2) 10 EM11 - 10 EP11 + 5 Cl - 10 X11 = 0 

3) 10 EM12 - 10 EP12 + 4 C2 - 10 X12 = 0 

4) 10 EM13 - 10 EP13 + 8 C3 - 10 X13 = 0 
5) 10 EM21 - 10 EP21 + 5 Cl - 10 X21 = 0 
6) 10 EM22 - 10 EP22 + 6C2 - 10 X22 =0 
7) 10 EM23 - 10 EP23 + 2C3 - 10X23 =0 
8) 10 DM11 - 10 DP11 - 10 X11 + 3 R1 = 0 
9) 10 DM12 - 10 DP12 - 10 X12 + 4 R1 = 0 
10) 10 DM13 - 10 DP13 - 10 X13 + 3 R1 = 0 
11) 10 DM21 - 10 DP21 - 10 X21 + 3 R2 = 0 

12) 10D1622 - 10 DP22 - 10 X22 + 4 R2 =0 
13) 10DM23 - 10 DP23 - 10 X23 + 3 R2 = 0 

14) X11 + X21 - C1 = 0 

15) X12 + X22 - C2 = 0 
16) X13 + X23 - C3 = 0 
17) X11 + 1.12 + X13 - R1 = 0 
18) 1.21 + X22 + X23 - R2 = 0 
19) Cl + C2 + C3 - R1 - R2 = 0 
20) Cl + C2 + C3 = 1 

Exhibit M3 LINDO Model for Derived A and B Matrices of Example 2 

MIN EM11 
+ EM21 
+ DM11 
+ DM21 

ST 

+ EP11 + EM12 + EP12 + 
+ EP21 + EM22 + EP22 + 

+ DP11 + DM12 + D212 + 
+ DP21 + DM22 + DP22 + 

EM13 
EM23 
DM13 
DM23 

+ EP13 
+ EP23 
+ DP13 
+ DP23 

2) 10 EM11 - 10 EP11 + 5 C1 - 10 X11 = 0 

3) 10 EM12 - 10 EP12 + 4 C2 - 10 1.12 = 0 

4) 10 E1613 - 10 EP13 + 7.5 C3 - 10 X13 = 0 

5) 10 EM21 - 10 EP21 + 5 Cl - 10 X21 = 0 

6) 10 EM22 - 10 EP22 + 6 C2 - 10 X22 = 0 

7) 10 EM23 - 10 EP23 + 2.5 C3 - 10 1.23 = 0 

8) 10 DM11 - 10 DP11 - 10 X11 + 3 R1 = 0 

9) 10 DM12 - 10 DP12 - ].0X12 + 4 R1 = 0 

10) 10 DM13 - 10 DP13 - 10 X13 + 3 R1 = 0 

11) 10 DM21 - 10 DP21 - 10 X21 + 3 R2 = 0 

12) 10D1622 - 10 DP22 - 10 X22 + 6R2 =0 

13) 10 DM23 - 10 DP23 - 10 X23 + 1 112 = 0 

14) X11 + 1.21 - Cl = 0 

15) X12 + X22 - C2 = 0 

16) X13 + X23 - C3 = 0 

17) X11 + 1.12 + X13 - 111 = 0 

18) 1.21 + 1.22 + 1.23 - R2 = 0 

19) Cl + C2 + C3 - R1 - R2 = 0 

20) Cl + C2 + C3 = 1 
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Exhibit M4 LIND°  Model for Example 2 with Unequal Weights 

MIN EM11 
+ EM21 
+ DM11 
+ DM21 

ST 

+ EP11 + 
+ EP21 + 
+ DP11 + 
+ DP21 + 10 

EM12 + 
EM22 + 
DM12 + 
DM22 + 

EP12 + EM13 + 10 EP13 
EP22 + 10 EM23 + EP23 
DP12 + DM13 + DP13 
DP22 + DM23 + 10 DP23 

2) 10 EM11 - 10 EP11 + 5 Cl - 10X11 = 0 
3) 10 EM12 - 10 EP12 + 4 C2 - 10 X12 = 0 
4) 10 EM13 - 10 E213 + 8 C3 - 10 X13 = 0 
5) 10 EM21 - 10 EP21 + 5 Cl - 10 X21 = 0 
6) 10 EM22 - 10 EP22 + 6 C2 - 10 X22 = 0 
7) 10 EM23 - 10 EP23 + 2 C3 - 10 X23 = 0 
8) 10 DM11 - 10 DP11 - 10 X11 + 3 R1 = 0 
9) 10 DM12 - 10 DP12 - 10 X12 + 4 R1 = 0 
10) 10 DM13 - 10 DP13 - 10 X13 + 3 R1 = 0 
11) 10 DM21 - 10 DP21 - 10 X21 + 3 R2 = 0 
12) 10 DM22 - 10 DP22 - 10X22-+ 4 RZ = 0 

13) 10 9M23 -10 DP23 -10 X23 + 3 R2.= 0 
14) X11 + X21 - C1 = 0 
15) X12 +X22 - C2 = 0 

16) X13 + X23 - C3 = 0 
17) X11 + X12 + X13 - R1 = 0 
18) X21 + X22 + X23 - R2 = 0 
19) Cl + C2 + C3 - R1 - R2 = 0 
20) CI + C2 + C3 = 1 
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