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ON THE SOLUTION OF A SUPERHIERARCHY WITH A BAYES LOOP

Bochang Chen® and V.M, Rao Tummala®
Department of Manufacturing Engineering
City University of Hong Kong, Kowloon, Hong Kong

Abstract: In this paper, we discuss the uniqueness condition for the solution of a kind of a
superhierarchy and establish the necessary and sufficient conditions for a superhierarchy to be
a Bayes loop. Also, a simple method of finding the solution is introduced.

1. Introduction

The problem of a superhierarchy with a Bayes loop was introduced in the literature by Saaty (Saaty,

1994). This problem considers a network as shown in Figure 1, where L, = {8, 62, ., 8y} is the state
space and L, = {x,, X,,..., X} is the sample space. Let P = ((p;),, ®Paseees (pl),,) be the importance
vector of L; given Gy, and P, =((P2)1, (P2)2s---s (pz)m) be the importance vector of L, given G,. The
elements of P, and P, are all positive (the elements with zero components‘can be deleted). The inter-
impact between L, and L, is described by two matrices P,, and P, respectlvely, where Py = ((p12)y) is
the column stochastic matrix whose jth column ((P12)5;, (P12)2js-- (P;z)u,) is the importance vector of L,

given x; of L, and P = ((py)y) is the column stochastic matrix whose jth column ((P21)y;, (P21)jo---»

(pz,)mj)T is the importance of L, given 6; of L.,. Naturally, Py,, Py, are both non~negq}ive matrices.
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Figure 1: A Superhierarchy with a Bayes Loop

The supermatrix corresponding to the superhierarchy of Figure 1 is given by
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L L, G, G
L, {0 P, P 0
L, |P, 0 0P,
G, |0 000
G, 0 0 00

This kind of superhierarchy is used for feedback decision probiems appeared in many areas. A decision
making problem that doctors often face, for example, is how to diagnose the disease of a patient in
determining a medical treatment plan according to the patient’s symptoms. In this problem, the
diseases cause some symptors, and the symptoms reflect some diseases; that is, there exists a feedback
between diseases and symptoms. The structure of these kinds of decision problems can be shown as in
Figure 2.

Determining Medical Treatment Plan

P, . P,
Py
L;: Probable Diseases {L;: The Symptoms Appeare
DlaDZ::"’D noo R ,S.lrsz:"-:s.m
PlZ

R

ZAlternatives of Medical Treatment Plans
ApAg. Ay

Figure 2: The Superhierarchy with a Bayes Loop for Medical Decision Problems

Here, P, = (P11, (®1)2se-» (P D) is the priority weights. vector for the diseases of the patient for whom
a medical treatment plan will be selected, and P, =((p)1, (P2)2--» ©,).)" is the priority weights vector
for the symptoms of the patient. The inter-impact between L,-and L, is described by two matrices P;,
and P,;, where the jth column of Py, = ((P1o);)mum is the priority weights vector of the diseases for a
given symptom S;, j =1, 2, ..., m. Similarly, the jth column of the matrix Py; = ((P21)i)nxa 1S the priority
weights vector of the symptoms for a given decease D, j = 1, 2, ..., n. And the jth column of the matrix
R = (tj)ixm Is the priority weights vector of the aiternatives of medical treatment plans for a given
disease D, j=1,2, ..., n.

Obviously, P; and P, are the solutions of the following equation
P,b=2a and P, a=b )

for some positive vectors a = (a;, 2y,-..., a,,)T andb=(b;, by, ..., b ) T The decision problem in medical
diagnosing cases is to find P; and P, from Eq. (1) given P, and P,; which are obtained by the doctor
according to his or her medical knowledge, and then to determine the corresponding medical treatment
plan. The solution of Eq. (1), however, is not always unique. Consider the following example.

Example 1: Define
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.6400 .1600 O 0
3600 .8400 O 0
0 0 .9474 8372
0 0 .0526 .1628

and P, =

= I U
N oy ©O ©
O W o o

We can find vectors a,b,a and b as

.080 .100 .160 200
_taz2o0] — laeo|  _ |240| ~ |.200
a= , b = and a = , b =

720 456 540 342

.080 344 .060 258

x

such that both satisfy Eq. (1). In fact, for any Ac {0, 1]

4 0 5 0
6 0 5 0

a=A" A=) | v=2" [ra-n |
01- 9 0 | 57
0 1 0 43

constitutes a solution of Eq. ().

Besides, in many cases, the solution of Eq. (1) also satisfy
(pIZ)ijbj = (p2!)jia'i i= L2,.., n;j =12,..,m
when we call the inter-impact between L, and L; is a Bayes loop. In the diagnostic problem of Figure
2, for example, (p1);(p2); and (p,);)(py) are the priority weights of the patient suffering from disease D;
and appearing with symptom S;, respectively, such that -
(pIZ)i:iA(p?) = (pZI)ji (pl)i iw 11 2: =3 n;.] = 1: 25 ey ML

In this paper, we shall first discuss the uniqueness condition of the solution of Eq. (1), then establish
the necessary and sufficient conditions for the superhierarchy in Figuré 1 to be a Bayes loop. We shall
also describe a simple method of finding the unique vectors a and b that satisfy Eq. (1) of Bayes loop.

2. The Uniqueness Condition of the Solution of Eq. (1)

We begin with some definitions.

Definition 1: The inter-impact between L; and L, is called a Bayes loop if
(pu)g(pz)j= (PZI);:(PJ): fOI' i=], 2, .y n,‘j=1, 2 am

Definition 2: If for any fixed i€{l, 2, ..., n} and je{l, 2, ..., m}, (p;);>0 implies (p;); >0 and vice
versa, we call the inter-impact between L, and L, has Property A.
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Because (py); (i=1, 2, ..., n) and (p); G = 1, 2, ..., m) are all positive, from Definition 1 we see that
Property A will be satisfied when the inter-impact between L, and L, is a Bayes loop.

Definition 3: The inter-impact between L, and L, is called reducible if L, and L, can be split into two
non-empty complementary subsets L, Ly, and L,,, L,, respectively, such that

Py =@);=0 Jor ielandjely, oriel andjel,,

Otherwise, the inter-impact between L, and L, is called irreducible, We now state and prove the
theorem about the uniqueness of the solution of Eq. (1).
Theorem 1: If the inter-impact between L; and L, is irreducible with Property A, then there exist two
unique positive vectors a and b that satisfy Eq. (1); that is,

Pnob=a and Pa=b ¢))

Proof: Eq. (1) can be rewritten as

0 PB,)fa _[2 @
P, O \b b
U=(O PiZJ
P, 0

The inter-impact between L, and L, is irreducible implies the matrix U is irreducible. In fact, if U is
reducible, then U can be partitioned (by permutation) into the form

A O
€))
B A,
where A, and A, are square matrices. However, B in Eq.(3) must be zero because of Property A. This

means the inter-impact between L, and L, is reducible, which is contrary with the condition of this
theorem. So U must be irreducible. Then, we prove that

UZ — (PIZPH 0 )
0 BF,

is regular, or its diagonal matfices Pj,P,; and Py;Py, are both primitive. Let T = (t;) = P,,Py,. First, the
diagonal elements of T must be all positive. In fact, there exists at least one positive element in'the ith
column of P,; . Let us denote this element as (p,;)y;. Using Property A, we have

ty = Z @12 )i P21 20120 >0
k=1

Secondly, sincc the itreducibility of the inter-impact between L, and L,, for any fixed i, je {1, 2, ..., n}
there exists an integer q such that t(q) >0, where t(q) is the element of T? . Consequently

ath) @ @
t Zt £y 2 191, >0

Let

Therefore, tfj )>0 for any integer u=q. It means that there exists an integer r such that T° >0, .which

yields T as primitive (Gantmacher, 1977, Vol IT, p.80, Theorem 8). Similarly, P,,P,, is primitive. The

primitivity of P,,P,; and P,,P,, means that U? is regular or the cyclicity of U is 2. Thus, any column of
the matrix

- P,P,)” PL(P,P,)"
U Ilm_ Uk=_(E U)(UZ) [ ( 12* 21 1232t J (4)
N—yes N é 2](P12P2] )w (I)ZIPlZ)“s
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is identical to any other column (Gantmacher, 1977, Vol.II, p.98). Let a be any column of (P;,P,,)” and

b be any column of (P,Py,)" , respectively. They are both positive and uniquely-satisfy Eq. (2) or Eq.
(1) (Gantmacher, 1977, Vol.Il, p.93 and p.98). This completes the proof.

Since Property A is true for a Bayes loop, we can also obtain the following corollary from Theorem 1.

Corollary 1: If the inter-impact between L, and L, is an irreducible Bayes loop, then there exist two
unique positive vectors a and b that satisfy Eq. (1).

3. The Equivalent Conditions Between Eq. (1) and Definition 1

It is easy to see that the solution of Definition 1 is a solution of Eq. (1), but the solution of Eq. (1) is not
always a solution of Definition 1 for arbitrary Py, and P,; with the conditions of Theorem 1. When
would the solution of Eq. (1) be a solution of Definition 1? Or, given P, and P),, how can we find that
the inter-impact between L, and L, is a Bayes loop? Theorem 2 answers this question. Also, a simple
method of finding the solution of Eq. (1) will be introduced. First we introduce two lemmas for
Theorem 2.

Lemma 1: When the inter-impact between L, and L, is irreducible with Property A, the solution of Eq.
(1) is a solution of Definition 1 if and only if, for coefficient matrices P, and P,, there exist positive
constants ¢, 0,..., &, and B, Bs,..., B such that.

12 )y P )i =01 )y )i forik=12.,mj=12 ., m 5)

and

)Bk(pzl );;Cpu )jk = BiCDZI );;,'(pzz )ji Jorik=1,2,..mj=12..,n (6

Proof (Necessity): If the solution of Eq. (1) is a solution of Definition 1, then the positive vectors a =
(@1, a3, ...y 3,)' and b= (b, by, ..., b,)" satisfy

(plz)gb_]: (pZI)jiai for i= 1’ 2: () n;J =12,..,m (7)
and
(P20 = (P12)iib; fork=1,2,..,n;j=1,2,..,m ®
Multiplying both sides of Eq.(7) by the corresponding sides of Eq.(8), we have
8 (P12 ) (P21 )y = 8PPy forik=1,2,.,mj=12,.m ®
For the same reason, we also have
b 0205 ®)i =biPa)yPr)y  forik=1,2,..,mj=1,2,.,n (10)

Thus, the necessity follows.

(Sufficiency): Assume that there exist positive constants o), 0,..., 0, a0d By, Ba,..., B such that Eqs.
(5) and (6) are true. Summing up Eq.(5) with respect to k, we obtain

n
(plZ)ij 2 (pZI)jkak= (pzl)jlal for i= 1: 2’ eoey ﬂ,j = la 29 ey H1 (1 l)
=l
Summing up Eq.(11) with respect to j, we obtain
n m
Z(E (PiP2dp)on = & fori=1,2,..,n (12)
k=l je=l
or
PuPz](x = (13)

where o = (0;, 0,...s oc,,)T. Similarly, we can obtain
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PyPpB=8 (14)
where B = (By, Bsy..» B) - From Eq. (13), it can be seen that
Py PPy 00 =Py (15)
This means that P,ois also the solution of Eq. (14). From the uniqueness of solution of Eq. (14), we
obtain

B=Pyu
or
n
B=D (ahos  forj=1,2,..m (16)
pas)
Similarly, we can obtain
a=P,f
Thus, o and B constitute the solution of Eq. (1). Combining Egs. (11) and (16); we obtain
(plZ)ijﬁj= (pz;)jiai for i= 17'2, veey n;j =I, 2, ey 1M1 (17)

"This means o and B also satisfy Definition 1. Therefore, the sufficiency follows.

It is not easy to check the conditions of Lemma 1. The following lemma will serve this purpose.

Lemma 2: For non-negative matrices Py, and P, there exist positive constants ¢, O,..., o, and 3,
Ba-... B such that

O (P13 ) @21 ) = P13 @1 )i forik=12..mj=12 ..m

B.(@x D@12 = Bi@21 )y P12 ) Jorik=1,2.mj=12 ..,n

if and only if the ratios

(plz)ij(pZI)jk

and

Jor @ypa)s#0: i k=1,2,..,nj=12.,m (18)

®1)®a);
and’
(02);(Pr2);
SIS EE o )Py # 0 L k=L 2 mi =1, 2 (19
(pZI)I(j(plZ)ji )
do not depend on j.

Proof: The necessity is obvious. Now we prove the sufficiency. Suppose
_ (piz)ij(pZ!)jk
@12 )kj P )ji
Since the ratios
(Plz)ij(Pm )5k
(plz)kj(pzl)ji

do not depend on j, we see that .
Wy =0; Wy fori, k,t=1,2,..,n

Therefor, the matrix A = (wy ) is consistent and there exist positive constants Oy, Ops..., O, such that
(Saaty, 1990)

Wy for (Plz)kj(le)ji;* 0; i, k= i s 2, veoy l'l;j = 1, 2, veey H1 (20)

for EhPa)i#0;Lk=1,2, ., mj=1,2,..,m

Wy = —- i,k=1,2,.,n @1)
&y
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From Eqgs. (20) and (21) we obtain
gi. _ (Plz)ij(pzl)jk
O Pr)y®a;

for (P1y(Par)i® ;. k=1,2, ..,m;j=1,2, .., m

or

ak(plz)ij(p2l)jk = ai(plz)kj(pm)ji fori,k=1,2,..mj=12,.,m
Similarly, we can show that there exist positive constants By, B,,..., B, such that

ﬁk(pzl)ij(Plz)jk = ﬁi(Pz[)kj(Plz)ji fori,k=1,2,.m;j=1,2,..,n

Hence the sufficiency follows.
Combining Lemmas 1 and 2, we have the following theorem.

Theorem 2: When the inter-impact between L, and L, is irreducible with Property 4, the solution of
Eq. (1) is a solution of Definition 1 if and only if, for coefficient matrices P 12 and Py, the ratios

(pxz)ij(le ik
(plz)kj(PZI)ji

for (1”2)19(1)21)]1;&0; iv k = ]’ 2: caey n:j.': I' 2; .., M

\

and
@215
Rl ki ] Jor o)1y # 0 i k=12, mj=12 .,n
(le )kj(plz )ji

do not depend onj.

Corollary 2: The inter-impact between L1 and L2 is a Bayes loop.if and only if, for matrices P,, and
P, the ratios

(plz)ij @ )jk
®12) @205

fbr @]?)l(j(p21)ji#0; i, k= I» 2, reey nv.j = 1, 2, ey m

and
P20)5 P12 .
—— = Jor )P 0 L k=12, m; j=1,2, 0
(021)5(Pr2 )

do not depend onj.

Assume that L; = {8, 8,,..., 8,} is the set of states of nature and let L, = {x,, X,,..., X,,} be the sample
space from which observations are drawn at random. Let P,; = ({(P21)) = ((x,]6;)) be the mxn column
stochastic matrix of likelihoods, let Py, = ((p;,)y) = (p(6;lx;)) be the nxm column stochastic matrix of
posterior probabilities, P, = ((p,);) = (p(8)) be the nx1 vector of prior probabilities, and P, = ((p,),) =
(p(x;)) be the mX1 vector of the marginal probabilities-of x;. We have

P(OIx)p(x;) = p(x;i)p(6;) fori=1,2,..n;j=1,2,..,m
that is, Definition 1 is satisfied. By Theorem 2, we have the following corollary.

Corollary 3: The ratios
p(6;]x; )p(x; 60 16;)p(6,}x,)

DO, % )p(c]8) (xkle P(O;x,)
do not depend on j. )
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Using Theorem 2, we find a simple method of finding a and b that satisfy Eq. (1) when the conditions
of Theorem 2 are satisfied. In fact, in this situation there exist positive constants ¢, 0,..., &, and By,
Bo-es B such that

_in_ - (Pu)ij (le)jk
ak (pjz)kj(pZI)ji

for (ppyP21);# 01, k=1,2,..,0;j=1,2, ..,m (22)

and

B (pZI)xj (p12 )_;k
ﬁk (le)k, (Plz)p

From the ratios of the right side of Eq. (22) and those of the right side of Eq. (23) we can obtain

(except a constant factor) ¢, 0,,..., 0t and By, Ba,-.., B, respectively. Normalizing them we can obtain
aand b. Here is an example.

for (p21)Pi2)i# 0; L, k=1,2,..., m;j=1,2,..,n (23)

-Example 3: Suppose, in Eq. (1),

02 02 04
04167 05769 07143 02273 03 01 04
Py={02500 01154, 02143 06818 | and By=| ° =
03333 03077 00714 0.0909 P

0l 05 01

It is easy to verify that the conditions of Theorem 2 are satisfied. Then, by normalizing the ratios
_512_ - (plz)zj(le),r =0.6, ?1= (pIZ)Bj(pZI)jl =04 and—al=
a, (P )u @2 a, (pp )1j(le)j3 a,

we obtain a; = 0.5, 8, = 0.3 and a; = 0.2. Also, by normalizing the ratios

b =(p2[)2j(pl2)jl=l.0833’ b =_(p_21)_3j(&2‘ﬂ.=1,1667,

Y3
1 (Pn)u(pxz)jz bl (le)lj(Plz)j3

o @)@l _ g By

b, (Pzn)u(Pn )14 b, -
we obtain b; = 0.24, bz =0.26, b; = 0.28 and b, = 0.22. Thus the vectors a =(a,, a,, a;)"
and b = (b;, b,, by, b,)" form the solution of Eq. (1).

IS
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4. Conclusion

In this paper, some problems about the solution of a superhierarchy with a Bayes loop are discussed
and a simple method of finding the solution is introduced. Theorem 2 shows the relationship between
the likelihoods ((py;); ) and the posterior probabilities ((p;2)y). It is a supplement to Bayes Theorem.
The results obtained here can be extended to some more general situations (a superhierarchy with
several Bayes loops, for example), which can be the topics for further research.
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