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ABSTRACT

In Analytic Hierarchy Process (AHP), a ratio scale (π1, π2, · · · , πt) for the priorities of the
alternatives {T1, T2, · · · , Tt} is used for a decision problem in which πi/πj is used to quantify
the ratio of the priority of Ti to that of Tj. In this article, a statistical method is proposed
for testing a specific rank ordering of the priorities of the alternatives.
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1. Introduction

In the collection of the alternatives {T1, T2, · · · , Tt} for a decision problem, the priority
vector of the alternatives is (π1, π2, · · · , πt) and for each i and j, the ratio πi/πj gives the
preference of the alternative Ti to that of Tj. A rank ordering of the priorities of the
alternatives is very important concern in a decision problem. More specifically, one needs
to test a null hypothesis H0 : π1 = π2 = · · · = πt against the alternative hypothesis
Ha : π1 ≥ π2 ≥ · · · ≥ πt with at least one strict inequality.

Let aij be the subjective estimate of πi/πj made by a judge for some i, j, i 6= j. It can
be assumed that πi/πj is perturbed by the multiplicative error eij to produce aij. Such
multiplicative models has been used by Dejong (1984) and Crawford and Williams (1985).
aij can then be written as
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aij =
πi

πj

eij. (1)

Let a
(k)
i,i+1 for k = 1, 2, · · · , n be the estimate of πi/πi+1 provided by the k-th individual;

k = 1, 2, · · ·n. 1/a
(k)
i+1,i can also be taken as estimate of πi/πi+1 if ai,i+1 estimates πi/πi+1.

Other values of aij for i 6= j can also be multiplied to produce estimates of πi/πi+1. In this
situation, it is appropriate that the common distribution of aij to be reciprocal symmetric
(see Crawford and Williams (1985)). For the multiplicative model (1), one such distribution
is the log-normal distribution. We assume here that eijs are independent and have log-
normal distribution with mean zero and variance σ2. Basak (1990) proposed a statistical
hypothesis testing method to test the null hypothesis H0 against the alternative hypothesis
Ha. But the corresponding distribution of the test criterion was rather complicated. In
Section 2, we propose simple alternatives of the null hypothesis H0 and the alternative
hypothesis Ha along with its test criterion. Computation of the proposed test criterion
and its distribution is discussed further in Section 3. A numerical example is provided
in Section 4 to illustrate the methodology proposed in this article. We then make some
concluding remarks in Section 5.

2. The Hypothesis Testing Problem

In the selection problem, the decision making is heavily dependent on the ranking of the
alternatives. The relative standing of the priority alternatives is important in resource
allocation problems too. In those problems, ranking of the alternatives would be sufficient
for the selection of a number of highly preferred alternatives. In these cases, one would like
to assure that the ranking of the alternatives is well-supported by the statistical theory.

A problem of hypothesis testing is proposed in this section. The hypothesis which gives a
specific ranking of the alternatives, without loss of generality, is the alternative hypothesis
Ha : π1 ≥ π2 ≥ · · · ≥ πt in favor of which we want to get evidence using sample information.
At least one is a strict inequality in the string of inequalities in Ha. The hypothesis we
want to reject is called the null hypothesis, H0. It states that all the alternatives are of
equal standing, i.e., H0 : π1 = π2 = · · · = πt.

Therefore, one has to test

H0 : π1 = π2 = · · · = πt against
Ha : π1 ≥ π2 ≥ · · · ≥ πt with at least one strict ineqiality.

}
(2)

The hypothesis testing problem in (2) has the following equivalent form:

H0 : θi = ln πi − ln πi+1 = 0 for i = 1, · · · , t− 1 against
Ha : θi = ln πi − ln πi+1 ≥ 0 for i = 1, · · · , t− 1

with at least one strict inequality.

 (3)
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The likelihood function f of a
(k)
i,i+1 for i = 1, 2, · · · , t− 1 and k = 1, 2, · · · , n is proportional

to

exp

[
− 1

2σ2

t−1∑
i=1

{
n∑

k=1

(ln a
(k)
i,i+1 − l̄nai,i+1)

2 + n(l̄nai,i+1 + ln πi+1 − ln πi)
2

}]
(4)

in which l̄nai,i+1 = 1
n

n∑
k=1

ln a
(k)
i,i+1. Writing θi = ln πi−lnπi+1 and yi = l̄nai,i+1 in the equation

(4), one gets the likelihood function f to be proprtional to

exp

[
− n

2σ2

t−1∑
i=1

(yi − θi)
2

]
. (5)

To test the null hypothesis H0 against the alternative hypothesis Ha, each of which are
given by (3), we will use the well-known statistical method of the likelihood ratio test. The
likelihood ratio test is based on whether

λ = max
Θ0

f/max
Θa

is small or not, or equivalently,

λ∗ = −2 ln λ = 2
[
min
Θ0

(− ln f)−min
Θa

(− ln f)
]

is large or not. (6)

In the above, denoting m = t− 1,

Θ0 = {θi|θi = 0, i = 1, 2, · · · , m},
Θa = {θi|θi ≥ 0, i = 1, 2, · · · , m with at least one strict inequality}.

By using (5), λ∗ in (6) can easily be evaluated to be

λ∗ = n/s2[
m∑

i=1

y2
i −min

Θa

m∑
i=1

(yi − θi)
2]) (7)

where s2 is an estimate of σ2.

3. Computation of the test criterion λ∗ and its distribution under H0

The minimum of the convex function f ∗ = nΣm
i=1(yi − θi)

2 of θi has to be found under the
inequality constraints gi(θ1, θ2, · · · , θm) = θi ≥ 0 [for i = 1, 2, · · · , m] in order to compute
the test criterion λ∗. This problem can be readily seen to be a non-linear programming
(NLP) problem. The NLP problem can be stated as follows:
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Find θi, ui, i = 1, 2, ...,m, that satisfy

∂f∗

∂θi
=

∑m
k=1 uk

∂gk

∂θi
,

gi(θ1, θ2, · · · , θm) ≥ 0,

ui ≥ 0,

ui.gi(θ1, θ2, · · · , θm) = 0.


(8)

Assuming that the functions f ∗ and g are differentiable, we state the necessary and sufficient
optimality conditions for this NLP problem. These optimality conditions are commonly
known as the Kuhn-Tucker conditions. Solving for these Kuhn-Tucker conditions is also
referred as Kuhn-Tucker (KT) problem. Solving for KT problem is finding a solution to
a system of non-linear equations (8). We state below necessary and sufficient optimality
conditions for the KT problem.

Theorem 1 (Kuhn-Tucker Necessity Theorem): If the objective function f ∗ and
the constraint functions gi are differentiable and if, furthermore ∂gi(θ1, · · · , θm)/∂θi for
i = 1, 2, · · · , m are linearly independent (this property is called the constraint qualification),
then if (θ∗1, · · · , θ∗m) is an optimal solution to the NLP problem, then there exist (u∗1, · · · , u∗m)
such that (θ∗1, · · · , θ∗m, u∗1, · · · , u∗m) solve the KT problem.

It is to be noted that f ∗ and gi for i = 1, 2, · · · , m are differentiable functions in this
situation and the constraint qualification is also satisfied.

Theorem 2 (Kuhn-Tucker Sufficiency Theorem): If the objective function f ∗ is con-
vex and the inequality constraints gi are all concave functions and if there exists a solution
(θ∗1, · · · , θ∗m, u∗1, · · · , u∗m) that satisfies the KT problem, then (θ∗1, · · · , θ∗m) is an optimal so-
lution to the NLP problem.

It is to be noted that our objective function f ∗ is convex and our inequality constraints are
concave.

Therefore, the existence of the optimal solutions (θ∗1, · · · , θ∗m) are guaranteed by the above
two theorems. We will now proceed to obtain these θ∗1, · · · , θ∗m explicitly. The gradient
vectors of gi for i = 1, 2, · · · , m are ∂gi

∂θi
= (0, 0, · · · , 1, 0, · · · , 0) in which 1 occurs in the i-th

position. The equations given by (8) reduce to

2n(θi − yi) = ui,

θi ≥ 0,

ui ≥ 0,

ui.θi = 0.


(9)
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One gets the following by solving (9) for θi and ui for i = 1, 2, · · · , m:

Either ui = 0 in which case θi = yi or ui = −2nyi in which case θi = 0. (10)

Now, let R denote the space of all sample vectors (y1, y2, · · · , ym). A point (y0
1, y

0
2, · · · , y0

m)
is known as the maximum likelihood estimate of (θ1, θ2, · · · , θm) for which the function
f ∗ = nΣm

i=1(yi − θi)
2 is minimized. More specifically,

minf ∗ = n
m∑

i=1

(yi − y0
i )

2.

Next we develop a testing procedure following Bartholomew (1959a, 1959b) and Kudo
(1963) in which we find the maximum likelihood estimate (y0

1, y
0
2, · · · , y0

m). Unlike Bartholomew
(1959a, 1959b) and Kudo (1963) who used an heuristic algorithm, we find the maximum
likelihood estimate using non-linear programming technique. For that purpose, the space
of all sample vectors R can be thought of divided into 2m disoint subsets,

R = Uφ⊂M⊂ARM , (11)

in which RM is the totality of all points (y1, y2, · · · , ym) such that y0
i = 0 for i 6∈ M and

y0
i > 0 for i ∈ M where (y0

1, y
0
2, · · · , y0

m) are the maximum likelihood estimates associated
with (y1, y2, · · · , ym). In (11), A = {1, 2, · · · , m} and φ is the null set. Clearly, RA is the to-
tality of all the sample vectors for which every component of the maximum likelihood vector
is greater than zero and Rφ is the totality of all the sample vectors for which every compo-
nent of the maximum likelihood vector is zero. It is to be recalled now that the existence
of the optimal solutions (θ∗1, · · · , θ∗m) are guaranteed by Theorems 1 and 2. These opti-
mum solutions (θ∗1, · · · , θ∗m) are actually the maximum likelihood estimates (y0

1, y
0
2, · · · , y0

m).
Therefore, the existence of the maximum likelihood estimates (y0

1, y
0
2, · · · , y0

m) are guaran-
teed for any sample vector (y1, y2, · · · , ym). In the following theorem, we will provide a
necessary and sufficient condition for a sample vector (y1, y2, · · · , ym) to belong to RM . We
will denote M = {d + 1, · · · , m} in order to avoid confusing notations but it will be clear
that the method works for any M for φ ⊂ M ⊂ A.

Theorem 3: A necessary and sufficient condition for the sample vector (y1, y2, · · · , ym)
belonging to RM where φ ⊂ M ⊂ A and M = {d + 1, · · · , m} is

(i) yi ≤ 0 for i = 1, 2, · · · , d,

(ii) yi > 0 for i = d + 1, d + 2, · · · , m.

Proof: (Necessity) If the sample vector y belongs to RM then y0
i > 0 for i = d + 1, · · · , m.

Since in this case y0
i = yi using (10), we have yi > 0 for i = d + 1, d + 2, · · · , m. This proves

(ii). To prove (i), let us assume the contrary. It means yi > 0 for some i = 1, 2, · · · , d. Then
for that i, using (10), we get y0

i > 0 which is contradictory to our assumption that the
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sample vector (y1, y2, · · · , ym) belongs to RM . Hence (i) is proved and so is the necessity
part of the theorem.

(Sufficiency) For this part, we have to show that (i) and (ii) imply that the sample vector
(y1, y2, · · · , ym) belongs to RM . It means that we need to show that y0

i > 0 for i =
d + 1, · · · , m and y0

i = 0 for i = 1, 2, · · · , d. (ii) and (10) together imply that y0
i = yi > 0

for i = d + 1, · · · , m. Now, if yi < 0 in (i) for some i = 1, 2, · · · , d, then using (10, ui > 0
for that i. It follows, then, from the fourth equation of (9) that y0

i = 0 for that i. Also,
if yi = 0 for some i = 1, 2, · · · , d then we get, from (10), that y0

i = yi = 0 for that i. In
any case, y0

i = 0 for i = 1, 2, · · · , d. This proves the sufficiency part of the theorem. Hence
Theorem 3 is proved. In light of Theorem 3 and (10), λ∗ in (7) then reduces to

λ∗ =
n

s2

∑
i∈m

y2
i . (12)

In the following theorem, we provide the distribution of λ∗ given by (12) under the null
hypothesis H0 given in (3).

Theorem 4: Under the null hypothesis H0 : θi = 0 for i = 1, 2, · · · , m, nm−1
m−d

λ∗ =
n(nm−1)
(m−d)s2

∑
i∈M

y2
i has F distribution with the numerator degrees of freedom (m − d) and

the denominator degrees of freedom (nm − 1) where s2 =
n∑

k=1

m∑
i=1

[
ln a

(k)
i,i+1 − ā

]2
with ā =

n∑
k=1

m∑
i=1

ln a
(k)
i,i+1/(n ·m).

Proof: Since ln a
(k)
i,i+1 is normally distributed with mean θi and variance σ2, yi has mean θi

and variance σ2/n. Therefore, under the null hypothesis H0,
√

nyi has mean 0 and variance
σ2 for i = d + 1, · · · , m. Consequently, n

∑
i∈M

y2
i , under H0, is distributed as σ2 · χ2

m−d where

χ2
m−d represents chi-square distribution with (m− d) degrees of freedom.

Now, under H0, s2 =
n∑

k=1

m∑
i=1

[
ln a

(k)
i,i+1 − ā

]2
, [where ā =

n∑
k=1

m∑
i=1

ln a
(k)
i,i+1/(n ·m)] is distributed

as σ2 · χ2
nm−1 where χ2

nm−1 represents chi-square distribution with (nm − 1) degrees of

freedom. Moreover, n
∑
i∈M

y2
i is distributed independently of s2 under H0. Therefore, under

H0

n
∑
i∈M

y2
i /m− d

s2/nm− 1
∼ Fm−d,nm−1 (13)

in which Fm−d, nm−1 represents F distribution with numerator degrees of freedom (m− d)
and denominator degrees of freedom (nm − 1). This, in turn, proves that nm−1

m−d
λ∗ has F
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distribution with the numerator degrees of freedom (m− d) and the denominator degrees
of freedom (nm− 1).

The above distribution of nm−1
m−d

λ∗ can be used to test the hypothesis in (2). At significance
level α, one would reject H0 if

nm− 1

m− d
λ∗ ≥ F0 (14)

where F0 is the corresponding critical value of Fm−d, nm−1 distribution, i.e, P [Fm−d, nm−1 ≥
F0] = α. In the next section, we provide an numerical example to illustrate the testing
method we proposed in this section.

4. Numerical Illustration

In order to illustrate the testing method developed in the paper, we present an artificial
data on the school selection example given by (Saaty, 1980) in this section. In an hypothet-
ical experiment, seven independent observations on each of the thirty pairs of six criteria
[Learning (L), Friends (F), School Life (S), Vocational Training (V), College Preparatiopn
(C) and Music Classes (M)] were collected from seven individuals of similar background.
The data are provided in Table 1. For example, the fifth observation on the pair (L,F) is
2.5 means that L is preferred 2.5 times F by the fifth individual.

These data were used by Basak (2011) and using the method provided in that article, the
rank order of the priorities of six criteria was established as πL > πC > πF = πV = πM = πS.
We wanted to check whether the methodology proposed in this article would support the
same ranking. In other words, we would like to test H0 : πL = πC = πF = πV = πM = πS

vs Ha : πL ≥ πC ≥ πF ≥ πV ≥ πM ≥ πS with at least one strict inequality.

The test criterion nm−1
m−d

λ∗ is computed to be 5.524. Recall that, Under H0,
nm−1
m−d

λ∗ is
distributed as Fm−d, nm−1 distribution. Here, (m− d) = 4 and nm− 1 = 34. At 1%
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Table 1. Comparisons Data of six criteria with respect to overall
satisfaction with school; n = 7.

Observations
Pairs 1 2 3 4 5 6 7
(L,F) 4 3 2 1.5 2.5 4 3.5
(L,S) 3 2.5 2 3.2 2 2.5 3
(L,V) 1 1.5 0.5 1 0.5 2 1
(L,C) 3 2.5 4 3.5 3 2 2.5
(L,M) 4 3 3.5 3 4 3 3.5
(F,L) 0.2 0.25 0.5 0.5 0.67 0.33 0.25
(F,S) 6 3.5 4 4.5 5 7 6.5
(F,V) 3 2.5 3 4 3.5 2 2.5
(F,C) 0.2 0.25 0.33 0.2 0.17 0.2 0.25
(F,M) 1 1.5 1 2 1.5 0.5 2
(S,L) 0.5 0.33 0.5 0.33 0.33 0.5 0.33
(S,F) 0.2 0.25 0.33 0.2 0.17 0.17 0.17
(S,V) 0.2 0.25 0.2 0.25 0.33 0.2 0.25
(S,C) 0.17 0.25 0.2 0.33 0.5 0.2 0.33
(S,M) 0.2 0.25 0.33 0.25 0.25 0.2 0.33
(V,L) 0.5 0.5 3 0.5 2 0.5 0.5
(V,F) 0.5 0.33 0.5 0.2 0.25 0.5 0.33
(V,S) 4 3 4 4 3 4 3
(V,C) 1 0.5 2 0.5 1 1.5 2
(V,M) 0.33 0.5 0.5 0.33 0.5 1 0.5
(C,L) 0.5 0.33 0.25 0.33 0.5 0.33 0.5
(C,F) 4 3 2 4 5 5 3
(C,S) 5 3 5 2 3 4 3
(C,V) 1 2 0.5 3 0.5 0.5 0.33
(C,M) 3 2 2.5 3.5 3 2 3.5
(M,L) 0.2 0.5 0.25 0.25 0.25 0.5 0.33
(M,F) 1 0.5 0.5 0.33 0.5 3 0.33
(M,S) 4 3 4 3 5 4 3
(M,V) 4 3 2 4 3 1 3
(M,C) 0.33 0.33 0.5 0.25 0.33 0.5 0.25

significance level, the critical value is F0 = 3.927. Therefore, we reject H0 at 1% significance
level and hence the rank order of the priorities πL > πC > πF = πV = πM = πS is supported
by the methodology proposed in this article too. One advantage of the methodology of this
article is that one does not need all of the above thirty pairwise comparisons data. Only
(L,C), (C,F), (F,V), (V,M) and (M,S) are sufficient to obtain from different individuals.
Therefore, one would only need the following Table 2.
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Table 2. Comparisons Data needed for the proposed testing method; n = 7.

Observations
Pairs 1 2 3 4 5 6 7
(L,C) 3 2.5 4 3.5 3 2 2.5
(C,F) 4 3 2 4 5 5 3
(F,V) 3 2.5 3 4 3.5 2 2.5
(V,M) 0.33 0.5 0.5 0.33 0.5 1 0.5
(M,S) 4 3 4 3 5 4 3

Next, we would be testing H0 : πS = πM = πV = πF = πC = πL vs Ha : πS ≥ πM ≥ πV ≥
πF ≥ πC ≥ πL with at least one strict inequality. We would then only need the following
Table 3.

Table 3. Comparisons Data needed for the proposed testing method; n = 7.

Observations
Pairs 1 2 3 4 5 6 7
(S,M) 0.2 0.25 0.33 0.25 0.25 0.2 0.33
(M,V) 4 3 2 4 3 1 3
(V,F) 0.5 0.33 0.5 0.2 0.25 0.5 0.33
(F,C) 0.2 0.25 0.33 0.2 0.17 0.2 0.25
(C,L) 0.5 0.33 0.25 0.33 0.5 0.33 0.5

The test criterion nm−1
m−d

λ∗ = n/s2
∑
i∈M

y2
i in this case was computed to be 5.392. Here,

(m− d) = 1 and (nm− 1) = 34. At 1% significance level, the critical value is F0 = 7.444.
Therefore, we would not reject H0 at 1% significance level and hence the rank order of
the priorities πS ≥ πM ≥ πV ≥ πF ≥ πC ≥ πL with at least one strict inequality is not
supported.

5. Concluding Remark

In the present article, we proposed a simple statistical method for testing rank ordering of
the priorities of the alternatives in the Analytic Hierarchy Process. It is found that this
proposed method is much simpler compared with the other methods but produces similar
conclusion.
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