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Abstract: Since T. Saaty founded AHP and ANP, these have been developed by many 
research workers. Recently especially Japanese workers are making remarkable theoretical 
works in this field. Here I would like to introduce the essences of them. Of Course there must 
be many other excellent works I have not opportunity to know. So I am afraid this lecture is 
not overall report but rather biased one about this field. 

1. The mathematical foundation of eigen vector method 

T. Saaty[Saaty,19801 proposed such principle that the principal eigen vector of a comparison matrix 
are reasonable evaluating weights of the given objects. This intuitive insight by Saaty to 

invent the eigen vector method is certainly excellent. This method has been used in almost all 
application fields of AHP and made many successful results. 

There is the explanation that if ad = wi/wi then the principal eigen vector of A is in = Pvi • • • wviT
so even if au is not exactly to w1/w, the principal eigen vector of A must be near to in. But this 
is rather week as the theoretical foundation of eigen vector method. 

For a long time I have been thinking over tins problem and believing that there should be some 
fundamental principle to produce Saaty's eigen vector method. And at last K. Sekitani 8t N. 
Yamald[Seldtani,19991 found that it is Frobenius mini-max theorem that gives this principle. 

His idea is as follows; wi is the self-evaluation of object i and aiiwi is the evaluation of i from view 
of j, so the average of external evaluation of i is 

= aipv.on (1.1) 
Therefor wi(i = 1 ro TO minimizing overall discrepancies between wi and t61(i = 1 r. n) must be 
desirable estimation of weights of objects. 

This idea is represented by the following mathematical language; 

min{ inax(Eji  ai3wa - 1) ) } (1.2) wi

The following Frobenius mini-max theorem just meets to get a solution of formula (1.2). 

[Theorem 1] Frobenius mini-max theorem; For a non-negative ii x n matrix 13.=[bij] and any positive 
vector in we have 

• En= , bipp; Eti NJ% min( i  ) 5_ Amax -C max( 3- ) 

-46 - 



( where Amax is the principal (maximal) eigen vector of B). And if B is irreducible we have 

'1 bi brwi 
max min( 3 3 ) = Amax = min max( 3-1 ) (1.4) w>o w>o 

And the principal eigen vector it of B attains max or min in (1.4). 

So taking A = (A — I)/(n —1) as B, the right hand side of (1.4) teaches us that the solution 
of (1.2) is the principal eigen vector of A, but the eigen vector of A coincides with that of A. 
(Because if IL is the principal eigen vector of A then 

1 Au = (A
n — 1 n — 1 

so it is also the principal eigen vector of A and vice versa.* 

• Seldtani's theorem states that the weights wi (i = 1 r... n) minimizing the maximal ratio of the aver-
age 1) of external evaluations and the self evaluation wi is the principal eigen vector of comparison 
matrix A. 

This gives not only the foundation of Saaty's eigen vector method but also various solving methods 
of variations of AHP or ANP, further this make us free from the conventional restriction that the 
comparison matrix must be reciprocal. 

Typical variation of AHP is the incomplete information case, that is, some elements of the compar-
ison matrix A= [au] are missing. For such problems Harker's method is well known. But I explain 
this through the following simple example. 

Example 1 

1 2 0.5 2 

A— 0.5 1 2 () 
2 0.5 1 () 

0.5 () () 1 

(A missing element is shown by Q) 

self evaluation average of external evaluations 
— (2w2 + 0.5w3 + 2w4)/3

2o2 — (0.5w1 2w3)/2 
w3 — (2w1 0.5w2)/2 

W4 - 0.51D4 

Note that in the complete case each object has the some number (n —1) of the external evaluations, 
but in the incomplete case it differs depending on objects. So for this problem we have A as 

[ 
0 2/3 0.5/3 2/3 

_ 0.5/2 0 2/2 0 A- - 2/2 0.5/2 0 0 
0.5 0 0 0 

And the principal eigen vector ID of A is the desired weights of objects. 

wT = [ 0.278 0.308 0.298 0.117 
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By Harker's method we have the solution of the above problem as the principal eigen vector of 

1 2 0.5 2 

-= 0.5 
2 

2 
0.5 

2 
2 

0 
0 

0.5 0 0 3 

It is 
tv'T = [ 0.286 0.310 0.302 0.102 I 

which is near to but somewhat different from WT. How different is explained in [Sekitani,ISAHP99]. 

Here we note that Selcitani's principle is to take the "average" of external evaluations to compare 
with the self-evaluation, but we can also take "total" instead of "average". By total-principle we 
have the following formula instead of (1.2). 

rain max(E aijwi/wi) (1.5) w 

And the solution of (1.5) is the principal eigen vector of A-I. 

Example 2 

There are 4 members 1,2,3 and 4 contending in a tournament contest of chess game. the result 
• was that like Fig. 1 (1 defeats 2 and 3, and 3 defeats 4). 

n 

2 3 4 

Fig. 1. 

Let au = 9 and cz = 1/0 (9> 1) if i defeats j and otherwise aii = 0, then the comparison matrix 
is 

1 0 9 0 1 

A= 10 1 0 0 
110 0 1 

0 0 1/0 1 
For this problem "total" principle is appropriate, so we take the principal eigen vector 

wT = { 0.509 0.157 0.255 0.079 (Amax = 1.618) 

of A-I as the evaluations of members (0 = 2). 

But by Harker's method we have 

wT = [ 0.444 0.222 0.222 0.111 

which coincides with the solution obtained by "average" principle[Sekitani,I5A11P99]. 

— 48 — 



2. The unifying method to solve AHP and ANP 

The analysis of ANP is based on the Saaty's so-called supermatrix[Saaty,1996]. Here I would like 
to explain what the supermatrix is through a simple example. 

Example 3 

In U.S.A there are three big fast-food companies, McDonald's(M), Burger King (B) and Wendy's(W). 
Assume that they are evaluated by two criteria advertisement(A) and service(S) like Table 1, and 
each of M,B and W has its management policy with weights for A and S like Table 2. 

Table 1 

A S 
M U21 1112 
B U21 1222 
W 1131 1132 

Table 2. 

M B W 
A W11. W12 W13 
S 2021 2022 1123 

In a word (A,S) evaluate (M,B,W) and at the same time (M,B,W) evaluate (A,S). The evaluating 
matrix of (M,B,W) by (A,S) is 

and that of (A,S) by (M,B,W) is 

U  = ?/21 [ 

Ull 

1131 

U12 

2122 
2232 

(2.1) 

1011 W = 1012 W13 I (2.2) 

where standardizing conditions 
3 

1021 1022 1023 

2 

are assumed. 

Ew,, = u = it ,  3) (2.3) 

Saaty's supermatrix for this ANP is 

= o 
U 

W 
o 

(2.4) 

Because of (2.3) S is a stochastic matrix. And analyses of ANP are always based on stochastic-ness 
of supermatrices. 

Saaty[Saaty,19961 proposed the limiting process tlim S t to analyze ANP. Precisely speaking he 

proved the following theorem. 
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[Theorem 2] If S is irreducible and primitive urn St converges to S' whose column vectors t—•co 
coincide with common vector x, that is, 

lim = Sce = [ w x • • • a'] (2.5) 

and each element of x is the required evaluating weight of the object. • 

Here irreducibility and primitivity of a matrix are important concepts. There can be well-explained 
graph theoretically. Considering an arc(i, j) if and only if i-th column element of matrix M is 
non-zero, we have the directed graph corresponding to M. M is irreducible if and only if its 
graph is strongly connected, and (non-negative) M is primitive if and only if the greatest common 
divisor d of lengths of all cycles in its graph is 1. 

It is easily found that d of S in (2.4) is 2, so S in (2.4) is not primitive. For general case of d 1, 
we have only to take S d instead of S, that is, 

lim (49d) t = [ X X • • • a'] (2.6) t—.00 

and x is the desired weight vector of objects. 

Note that the above analyses are based on the stochastic-ness of S. And we can easily find[Sekitani] 
that x in (2.5) or (2.6) coincides with the solution x of 

Sx = (2.7) 

The maximal (principal) eigen value of S is 1 so, the solution x of (2.7) can be considered as the 
principal eigen vector of S. 

From this fact even if S is not stochastic, the principal eigen vector of S, that is the solution v. of 

Su = Amaiu (2.8) 

must be the desired evaluated weight vector of objects in ANP. But this is exactly the solution of 
Seidtani's formula (1.5) by taking S as A in (1.5). And the following famous theorem of Frobenius 
gives the uniqueness and positivity of the solution of (2.8). 

[Theorem 3] The principal eigen vector of a non-negative irreducible matrix is unique and positive 
vector. • 

So Sekitani's principle is directly applicable to ANP, and further by this we are free from the 
restriction of stochastic-ness of supermatrices. In a word in both AHP and ANP we can solve the 
problem by finding the principal eigen vector of the comparison matrix A and the supermatrix S 
respectively. 

Generally the supermatrix S in ANP is considered to be in the higher level than the comparisons 
matrix A in AHP. The word "super" itself reveals this fact. The elements of A are given by direct 
paired comparisons, but the elements of S are given through several steps of calculations. 

But mathematically they have the same role which generates the synthesized evaluations of objects. 
And synthesizing procedure is very simple. It is the calculation of the principal eigen vector of A 
or S. 
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3. General solving method of ANP 
In section 2 I explained that problems of ANP are solved by calculating the principal eigen vector 
of supermatrix 5, and that this method need not the stochastic-ness of S. But as shown in sec-
tion 2, the (non-negative) irreducibility of S ( the strongly connectivity of its graph) is our basic 
condition. Saaty treats reducible (non-irreducible) supermatrices, but I think it ends in rather 
unsatisfactory results. 

But very recently Sekitani & Takahashi[Seldtani] had an idea to solve general (not necessarily 
irreducible) supermatrix S. Here I briefly introduce their idea. 

Now the restriction imposed on S becomes only non-negativity, but of course its graph must be 
connected, otherwise the problem is meaningless. We often encounter the case where the graph 
of S is connected but not strongly connected. Note that diagonal elements of S are always zeros, 
that is, its graph has not self-loop. 

Example 4 

Consider again Example 3 ( in section 2). Assume that general evaluations of A and S in fast 
food business word are vi and v2 respectively and let y r  = [vi v2I, then the supermatrix is 

S= [ 0 0 0 

V 0 Wi (3.1) 
o U o 

and the corresponding graph is that in Fig. 2. This is clear y connected but not strongly connected. 

/4t4 5 
Fig. 2. 

A connected graph is always decomposed to several strongly connected components (clusters) and 
each cluster has such order that an earlier ordered cluster has no input from lower ordered clusters. 
For example the graph in Fig. 3 has 4 clusters. And the corresponding super matrix is 

A1 o 0 0 

S = B21 A2 0 0 (3.2) 
B31 0 A3 0 

0 B42 B43 A4 

where Ai is the evaluation matrix within cluster i, and /3ii is the evaluation matrix of cluster i 
by cluster j. And Ai is irreducible unless Ai is a 1 x 1 matrix, that is, a scalar. Through this 
example I explain the general solving algorithm. 

Firstly the following standardizing procedure is necessary; for each i (except the case Ai is a scalar) 
calculate the principal eigen value Ai of Ai and let 

Ai = Ski= Thal Ai (k = 1,• • •) (3.3) 
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Fig. 3. 

Then every principal eigen value of A1 is 1 (If Ar is a scalar, it is always 0, then assume Ai = 0). 

This standardizing procedure not only plays the role to make evaluation levels of clusters even, 
but also make the following algorithm reasonable. 

The solving algorithm based on the average-principle is as follows; 

cluster I: A1 is irreducible, so the method of section 2 can be applied to have solution u1 which 
is the evaluation weight vector of objects in cluster I, that is, u1 is the principal eigen vector 
of A.1. Here we assume that uk (k = 1, 2, • • .) is always standardized so that the sum of 
elements is 1. (If A1 = [an] is a scalar then an =0 (diagonal element is always zero), and 
we have u1= un=1). 

cluster II: Denote the number of non-zero elements in i-th row of [ 1321_ Az] by n21. And let 
[B21 A2] be the matrix whose i-th row is divided by n21, and further b2 = B flui. Then let 
the principal eigen vector of 

[ )62 .7102 
be { 1 

u2 
and n2 is the evaluation weight vector of objects in cluster II. 

cluster III : is solved by the same way as cluster II. 

cluster IV : Let t.j =1 3 42U2 + 1343u3, and let the principal eigen vector 

(3.4) 
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of (3.5) be then 8 4 is the solution of cluster IV (24, ii-143, • • • are the same meaning as 2 2
and 1321). 

[ 1: 
0 

4 .714 (3.5) 

Note that the matrix of type(3.4) (or (3.5)) is not irreducible so generally we have no evidence 
that the principal eigen vector of this is a positive vector. But the principal eigen value of Ak is 
always 1, so that of Ak is smaller than 1 so the principal eigen value of the matrix of type(3.4) is 
always 1 because of value 1 of (1,1) element, which shows that the principal eigen vector (3.4) is 
the solution of 

.7.4,kUk = Uk (3.6) 
Formula (3.6) shows that the self-evaluation of each object is equal to the average of the external 
evaluations. Further more the following theorem gives the basic foundation of the above algorithm. 

[Theorem 4] For the principal eigen vector 

of 

Ak
uk is a solution of the problem 

-hi(k) +Eialj(k)uj(k) ui(k) min ma.tImax( uk>o i Iii(k) 

where aid(k) is the (i, j) element of 2k and i'j(k) (ui(k)) is i-th element of Fik (Lk)•. 

Formula (3.7) is almost similar to our fundamental criteria (1.2), and gives the evidence of positivity 
of Uk• 

4. Dominant alternatives and the concurrent convergent method 

Elements of the comparison matrix A in AHP or the supermatrix S in ANP can be considered 
to be relative evaluation values. The analysis of AHP or ANP is to be estimate the absolute 
evaluation values of objects by the given values of A or S. Speaking graph theoretically, we are 
to estimate the unknown values of nodes by the given values of arcs. 

But the values of the elements of A or S themselves are often very unstable or erroneous. It is 
often said that the evaluation of alternatives by each criterion is rather stable but the evaluation 
of weights of criteria in ANP is very unstable. 

Kinoshita & Nakanishi[cinoshita,1999] proposed very unique ideas "the dominant alternatives" 
and "the concurrent convergent", these can be used to correct the unstable or erroneous values of 
evaluations. In the graphic structure of ANP, we can say, this method is to correct unstable values 
of arcs by the stable ones of arcs. 

First I explain the concept of "the dominant alternatives" through the model like example 3 (in 
section 2). To make our discussion systematic, we denote the criteria C1, G and alternatives by 
A1, .212, A3, then we have ANP problem shown in Fig. 4. The supermatrix is the same as that of 
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Fig. 4. 

(2.4). 

Generally the elements of W (the evaluation matrix of criteria by alternatives) are less stable than 
that of U (the evaluation matrix of alternatives by criteria). The idea of K & N is to correct the 
values of W by that of U. • 

The first step is to select a dominant alternative as a representative, say Au and estimate the eval-
uation values wij U i) of other alternatives based on the evaluation value wn of the dominant 
alternative. 

The estimation is based on the following ratio or proportion principle; 
wij 
W11 uu 

which says that the ratio of the evaluation of criterion C, by alternative Aj to that by Ai is equal 
to the ratio of evaluation of Aj by C, to that of A1 by Ci. 

(4.1) 

The validity of this principle is of course a problem. But if we agree with it, then we can estimate 
wil by uji, uli and wia. Denoting the estimate by itilj(1) we have 

= ' 1-11/21 (i = 1,2, j = 3) (4.2) uu

Of course the original data wij does not coincide with iii,j(1), and coordinating procedure the 
original data and the estimation is the "concurrent convergent method". 

Generally if we select Ak as a dominant alternative, then we have the estimations based on Ak 

like 
= wik (k = 1, 2, 3, i = 1, 2, j(0 k) = 1, 2, 3) (4.3) 

Uki 

The concurrent convergent procedures are made by calculating the average tacj of original data uuj
and estimated eij(k), and taking this average value 24.1 as a new original data. These are shown 
in Table 3. Here fau(k) is a standardized value of i31 (k) in Aj, that is 

i111(k) =w(k)/ (iBij(k)-F ia2j(k) ) (4.4) 

Example 5 

The concurrent convergent procedure for the following example is shown in Table 4. 

u = 
un uiz 1/6 0.6 
un tin = 1/3 0.3 
U31 U32 1/2 0.1 
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0 

A1 
Table 3. 

A2 A 
W11 1021 2012 ,W22 

1012 (1) W22 (1) 
......1013 
1013(1) 

.....1023 
/1)23(1) 

2141(2) 1021 (2) W13 (2) 1023 (2) 
11)11 (3) ii:321 (3 ) 11,12 (3) lb22(3) 

wit /41 wiz 142 W13 1143 
. . . . . . . . . . . . 

= [ vii
1.012 tits = 0.4 0.7 0.2 Iw 

W21 W22 1033 0.6 0.3 0.8 

stepl .400 .600 .700 .300 .200 .800 
.727 .273 .923 .077 

.368 .632 .913 .087 

.014 .986 .053 .947 
step2 .261 .739 .493 .507 .679 .321 

.585 .415 .864 .136 
.196 .804 .814 .186 
.105 .895 .319 .681 

step3 .187 .813 .466 .534 .786 .214 
.479 .521 .806 .194 

.179 .821 :797 .203 

.169 .831 .449 .551 
step4 .178 .822 .465 .535 .796 .204 

11/11 1021 1012 1022 1013 1023 

Thus we have estimated W 

[ 0.178 0.465 0.796 W = 0.822 0.535 0.204 

5. Strong y regular design in AHP 

The last topic is, statistically speaking, a design problem. It is often said that we need a large 
number .C2 = n(n -1)/2 of paired comparisons in AHP if the number rt of objects is large. But, I 
think, we have no difficulties for this if we use well designed sampling method. Roughly speaking, 
about two times (2n) of the number (n) of objects are enough for the number of comparisons. 

Considering an (undirected) edge j) for paired comparison of object i and j, we have a graph 
for a design. So a design is represented by an (undirected) graph. Wang & Taltahashi[Wang,1998] 
proposed designs by strongly regular graphs, and showed the goodness of them for various values 
of it (the number of objects) and m' (the number of comparisons). 

The definition and properties of a strongly regular graph are well represented by its adjacent ma-
trix, which is a n xn matrix N=.-Icii] with 01 elements; cid = 1 if there is an edge(i, j) and cii = 0 

- 55 - 



other wise. 

The regular graph is well known. Every point of this graph has the same number (d) of edges 
incident with it, which is represented by 

NJ = dJ (J is all 1 matrix) (5.1) 

A regular graph is strongly regular (s.r.) if and only if its adjacent matrix N satisfies the following 
relation; 

N2 = ad.+ aiN + a2J (5.2) 

with integers ao, a1, a2, which means that the algebra generated by N and J is linear, that is, any 
polynomials (with integral coefficients) of N and J are always represented by linear combinations 
of N,1(= N°) and J. 

The strongly regular graph has very nice properties for design. For fairly large domain of combina-
tions of n and m, strongly regular designs, if they exist, have smaller standard errors of estimation 
of weights than any other designs. We can infer that the goodness of strongly regularity is based 
on its algebraic simplicity shown in (5.2). 

But unfortunately we have strongly regular graphs for only very rare combinations of rt and in. So 
we extend the concept of s.r to quasi strongly regular (q.s.r). If the adjacent matrix N of regular 
graph has the following relation for fairly small r(<< it) we call it q.s.r. 

Nr÷1 = a0/ + aiN + • • • + arir. + ar iJ (5.3) 

The q.s.r. graphs can cover the fairly large scope of n and in. 

W & T surveyed various construction methods of s.r. and q.s.r. graphs[Wang,19981. We can use 
them for practical implementation in ANP. 
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