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ABSTRACT

In this paper we develop a method based on theaflpairwise voting to rank projects or candidaaed
incorporate in the ranking process how stronglyrdierees/voters feel about the comparisons thégema
Voting is a modified form of ranking and all thetge are equally important. However, there are
situations similar to voting in which the votes am just ordinal but each voter expresses an sitienf
preference for the different candidates. For examanking projects for funding. We show that our
method yields the same results as ordinal votingnithe intensity of preferences tends to infinity.

KEYWORDS: voting, group decision making, pairwisemparisons, reciprocal matrices, Analytic
Hierarchy Process

1. Introduction

One of the purposes of the electoral process islitit and measure the preference of voters.
However, the use of voters' preferences is nottéidnto the election of government officials or lbar
members in the public and private sector. Thengopirocess is also used to rank projects, e.ghdn
National Science Foundation or the National Ins&#Lof Health (NIH), and in general, to rank altgive
courses of action. In many cases, ranking fromubiers’ preferences needs to be translated into
priorities that can be used to allocate resoursesh as prioritizing spending in a portfolio of @asch
projects, when not all the projects can be fundesltd budgetary constraints. In general, NIH duats
have all the necessary funds to support all thgegt® requesting funding. Referees then are requo
rank the projects making intensity of preferencateshents according to some pre-established
dimensions, such as innovation, institution, resear and so on, that will yield a cardinal rankofghe
projects, i.e., the projects are assigned a sbatehtlp the referees decide how to fund them.

In this paper we develop a method based on thedflpairwise voting to rank projects or candidates
and incorporate in the ranking process how strottygyreferees/voters feel about the comparisons the
make. Although this is not a new problem as nditgdCook et al., 2005) and (Hochbaum and Levin,
2006), our approach is new.

1.1. Notation and ter minology
Let A ={a,...,a,} be a set of alternatives. LBt={1,2,3,...}be the set of voters. preference
order g = {a,.l,...,a,.m} is a ranking of the alternatives. LgfA) be the set of all m! orders. gofile on

a group of voterdv EN is a mappingp: M — L(2). Let® be the set of all the possible profiles. For

o OL(A) and¢ O®Plet n_(¢) be the number of voters in the proffiéhat have the preference order

A preference function is a mapping from the set of profildsto the set of preference orders,
f:® - L(A). Achoicefunction is a mapping from the set of profil@sto the set of nonempty subsets

of A. Let (01((0),...,JH ((0))be the different orderings in the profie. LetV, [Jh((a)]be the number
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of voters who prefer to j in the orderingg, (¢)of profie¢. Letn (¢)be number of votes in the
h

ordering Uh(qp) of profileg. Letw [Jh((o)]be the weight assigned to thk alternative in the ordering
g, (@) of profileg.

2. The Eigenvector Method For Pairwise Voting

When people vote in favor of a candidate A versoaralidate B, they basically rank them and state
that for example A is preferred to B, i.éd,> B. If a population of N individuals vote to seléetween
A and B, if n, vote for A andn, vote for B, then out of the total number of votes+n, ,

(n, /n, +n,) x100percent have voted for A and the remainder for [t us assume without loss of
generality thatn, = n,. So, for the population of N individuals how mustrongly is candidate A
preferred over candidate B? The answenm, isn, if n,>0. The matrix of pairwise comparisons
representing the relative strength of preferencé¢hi® candidates is given by

Voting Matrix  Weights

(o) )
n2 nl+n2

noy |

n n+n,

The voting matrix is a positive reciprocal matie,, if the entries of the matrix are denoteddjy then

n
a; = qj‘lfor alli andj. Note thata, = —. If instead of two candidates there areandidates, then
n.
J
because people only vote for one candidate, thiegratatrix would be given by

[ y y\
n, n,

n/ 1 .. V

w=| /n n (L.1)

o

n /n,

Multiplying this matrix by the column vectdy, ,,,...,n )we get

1277227070,
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Since the trace of the matrix is equahpthe trace of a matrix is equal to the sum oftaleigenvalues,
and the rank of th& is equal to 1, we conclude thatmust be an eigenvalue @, and it is its largest
eigenvalue in modulus. By Perron-Froebenius’ taeofGantmacher, 1960) it is known that the largest
(principal) eigenvalue of a nonnegative real maslixays exists and it is positive and real. In case,
that eigenvalue is equal to. The right eigenvector associated with the ppakeigenvalue is unique to
( T

within a multiplicative constant and it is given EerL%
voters. The principal right eigenvector yields toerect percentage of votes for each of the cateléd

This model assumes that people vote for one catedmtdly. However, when a person can vote for

more than one candidate the matrix of paired coispas may be inconsistent (Saaty, 1986), i.e., the
entries do not satisfy the conditi@a,, =a,for all i, j andk. In this paper we are concerned not just

with people voting for multiple candidates but remgkthem in term of preference.
Recall that we denoted by, (@) the number of voters in a profilgthat prefer candidate to

n
W‘“J , whereN is the total number of

A
candidatg. Leta, (9 =- @ , V; (@) >0. Note that even if the profilgcontains all m! preference
v.(@
. . . . _Vi(®
orders, the voting matriR(¢) whose entries are given Iay(qo)=T, V;(® >0, may not be
V. (@
ji

consistent. So the task is to synthesize fromrdiies of preferences a vector that best represhats
voters’ preferences.

2.1. Properties of the Eigenvector M ethod
In general, when the voting matrix of pairwise camgon ratios is not consistent, it is not possible

V.
infer from a, () EM>1that alternative defeats alternativg. Let W(¢) be the principal right
ji

eigenvector of the matrid(¢), i.e., A(g)W(g) = A, W(¢) .

Definition: A reciprocal pairwise voting matrif(¢) :{a,.j ((p)} satisfiesrow dominance if and only if

for any two rowsi andj, a,(¢) = a;,(¢) or a,(¢) <a;,(¢), for allh. Thus, a profile satisfies row
dominance if its corresponding reciprocal pairwiséing matrix satisfies it.
Note that because, (¢) +V,; (¢) = V;,(¢) +V,; (¢) = N thena,,(¢) = &, (¢) implies v, (¢) 2 v;,(¢) -

Row dominance defines a strong order on the saiterinatives.
Theorem 1. The eigenvector method on profiles that satisfy row dominance is Condor cet.
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Definition: A voting method is said to be&onsistent if and only if given two disjoint profileg'and ¢"
on which the method yields the same consensus ingdere., f(¢") = f(¢"), it yields the same
consensus ordering on the joint profige= ¢'L1 ¢", i.e., T(¢) = f(¢") = f(¢").

Lemma 1: The union of two digoint profiles that satisfy row dominance and yield the same order on the
alternatives satisfies row dominance and yields the same order.

(V. (@)
Lemma 2: Given a profile ¢ with corresponding reciprocal pairwise voting matrix A(¢) = LV” (@J
ji

that satisfies row dominance, if for any i and j, a,(¢) = a;,(¢), for all h, thenw(¢) = w,(¢), where

wW(p) = (vvi (@)T isthe principal right eigenvector of the reciprocal pairwise voting matrix A(¢) .

Theorem 2: The eigenvector method on profiles that satisfy row dominance is consi stent.

Definition: A voting method satisfiesindependence from irrelevant alternatives (1lA) if the
addition/deletion of an alternative to a profileedonot alter the consensus ordering obtained fhem t
original profile.

V.
Let @be a profile withm alternatives, letA(¢) =LV”—(¢))J be the associated reciprocal pairwise
ji
voting matrix, and letw(¢) be the corresponding principal right eigenvectorAgfp) . Let ¢'be the

vy (#)
Vi (@)
pairwise voting matrix, and lelW(¢') be the corresponding principal right eigenvectdrhe matrix

A9  a,.(9)

profile resulting from the addition of a new altative, letA(¢) =[ ] be the associated reciprocal

A(@) is given by A(@) = 1 1 where @_,,(¢) is an nx1 vector given by
(%)

(V@) V@)

D@ Ve @))

Theorem 3: The eigenvector method on profiles with row dominance satisfies independence from
irrelevant alternatives.
Corollary: The eigenvector method on profiles that satisfy row dominance satisfies the independence of
clones criterion. *

A condition that is weaker than row dominance iddinance.
Definition: A reciprocal pairwise voting matribA(¢) is N-dominant if there exists a positive integer N

such that for alln> N, and any two rows andj the nth power ofA(¢), A(¢)" :{al(jn)((ﬂ)} , satisfies
al’(¢)2a)) (¢ ora)’ (¢) <& (g for allh.

Lemma 3. Areciprocal pairwise voting matrix without preference loopsis N-dominant.

Lemma 4: Let A(¢)be a reciprocal pairwise voting matrix, and let W(¢) = (Wl(gz)),...,wn((o))T be its

principal right eigenvector. Let A(g)" = { a” (go)} be the n™ power of A(¢). Then
lim A(9)"* Diag A(@)"] " = W) *[W(¢)']™
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( (|l<) (@ .. 0
where Diag[ A(@)"] = ) :
0 - a’@

Theorem 4: Row dominance is a necessary and sufficient condition for the Eigenvector Method of
Pairwise Voting to satisfy Independence of Irrelevant Alternatives.

3. Pairwise Voting With Intensity Of Preferences

In elections, voting is a modified form of rankiagd all the votes are equally important. However,
there are situations similar to voting in which tretes are not just ordinal but each voter expsesse
intensity of preference for the different candidateFor example, ranking projects for funding. The
voters, in this case they are called refereesesttwr different projects according to some criteridne
scores are then used to rank the projects. Thiematinstitutes of Health use such a system andoss
the National Science Foundation. In general, dube large number of projects that need to bea@dnk
is possible that some referees only rank some tiualh projects. In this case the projects neebigo
scored so that they can be compared with the sobrather similar projects and the ranks mergedt B
within a subgroup of projects the referees scaréhal projects. Thus, we can assume without Idss o
generality that all the referees rank all the prige

3.1 Ranking with Complete Pairwise Comparisons
Ranking can be considered a limiting condition afrpise comparisons. Consider two projegfs
and a,. Comparing them according to a criterion we cgoress how strongly we prefer one project to

the other. For example, & is preferred toa, with intensitya the result is a reciprocal matrix of pairwise
comparisons given by

a8 &
a [ 1 a)
a, L a™ 1J
o o (a1 Y
This matrix has a principal right eigenvector gl\lW]L _ — J that converges to the vector
l+a 1+a

(1, O)T asa — . Thus, the ordinal ranking of the two projectsdgiivalent to pairwise comparing them
with an intensity of infinity of one project ovenather.

((n,) (n) )

Given a profilep= a a, the pairwise voting matrix is given by

4, &
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( )
(@)
5 1 /nz(ca)

()
% ng L

If all the voters that prefea to a, have an intensity of preferen(alalthen we can represent the

pairwise voting matrix as follows so that whalrjm — ocowe obtain the pairwise voting matrix given

above:
( ( \ )
Asp
. Lam N 1J n(®
az>1
L82>1+1) n,(9)
Ay
La2>1+1) n,(¢) .
([ a., )
Liam +1J n (o)
and the principal right eigenvector of this matsxgiven by
( ( \ )
a,
la, +1) 2@
{ o \nm((pw i J +(0)
3, )
a21 +1) n2>1(§”)
a, )
Lo r1) =@ L +1J (@)

If all the voters have different intensity of preface al(fj), then the pairwise voting matrix is given by
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( ”bz((”)( (k) \ )
. > (a7
s (9) [ (k) A
2 (o)
n2>1(w)( aékl)
Zlav)

%z(w)( ai;) \
2 )
k=1 2

Finally, if we comparen projects the pairwise voting matrix with intensitfypreferences would be given
by

Moo (@) 4(K) Mm@ (k)
( 2 a1 1> aim \

(k) (k)
k=1 al +1 . k=1 aim +1
Mo (@) (k) Mem (@) (k)
ol ) m

o ay +1 o am t1
A= g
CIOY :1

(1.3)

wheren_.(¢) and afj")represent the number of voters that préferj and the intensity with which the

K" voter prefers to j, respectively. Note that whalfj") oo, for alli andj, the pairwise voting matrix
converges to the matrix

( 1 le(@ Wlm(@\

W((ﬁ) — 21(@ 1 W2m(¢) (1.4)

W@ W@ - 1

i>j (¢)
nj>i ((0)

wherew; (¢) =

’ nj>i(qa)>0'

3.2 Example
Consider the following voting profile
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4 3 © @

(a a a a |
= & & a g
8 & 8 g
The reciprocal pairwise voting matrix and its cegending principal right eigenvector are given by
1 11/3 9/5) ( 0.5605 )
A(¢)={ 3/11 1 7/7J,W(¢)={ O.1938J-
5/9 717 1 0.2457

Let us assume that the voters express their inyeokpreferences as given in Table 1. Synthegitire
judgments using (1.3) we get the matrix and coording eigenvector

) 1 34547 1.8862) [ 0.5594 |
A(¢)={ 02895 1 0.9893J,\7V(<0):l 0.1974J (1.5)
0.5302 1.0108 1 0.2432

3.3. Ranking with Incomplete Pairwise Preferences

Let us now assume that the voters do not proddgeossible orderings of the candidates to make it
n.;(¢)
N (@)
n_.(¢ >0 but n., (@ =0. This can happen in three situations: (a) Nobaahksj ahead of; (b)i is

i>]

not even ranked by some of the voters; and (c) samters do not rank a candidate but there does not

exist a pairi andj as in case (a). Examples of cases (a), (b) andrécthe profilesg', ¢"and ¢",
respectively:

possible to havev, (¢) = , N, (@) >O0for all i andj. Thus, there exist somieandj such that

4) 3 () 4) 3 () (2 4) 3 () (2

(a2 a) [(aaaa)l [(aaaa)

= a a a g'=l a a a g'=l a a a a

a8 8 4 8, a8 & 8, 8 a

The reciprocal pairwise voting matrices are givgn b

1 12/0 7/5) (1 9/0 9/0) (1 9/2 9/2)
A(czf)={0/12 1 4/8JA(¢')={0/9 1 7/7J A(¢)={2/9 1 7/7J
5/7 8/4 1 0/9 7/7 1 219 717 1

In case (a) a way to provide a solution would bintiwduce a phantom voter that prefetsi. This will
work as log as the number of voters is not too km@hkse (b) can be easily handled using intercdity
preferences. Case (c) does not pose problems deethe pairwise voting matrix does not have any
zeros. Table 2 shows the intensity of preferentése voters for profileg". Using (1.4) the reciprocal

pairwise voting matrix and corresponding eigenveate now given by
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) 1 24166 1.4463) ( 0.4821)
A9 =[ 0.4138 1 0.9891j () ={ 0.2359J.
0.6914 1.0108 0.2819
3.4. Ranking from Weights
Profiles do not always have to be of an ordinabtyfAssume that each voter has a set of priorities
assigned to the alternatives. Ligt* () be the priorities of th&" voter in profile¢. From these

priorities we can estimate the reciprocal pairwisatrix of preferences of the voteﬁjk)(qo) by

8, () = vvl(k) (@. The reciprocal pairwise voting matrix is obtalnesing (1.3). For profile, the
]
reciprocal pairwise voting matrix and correspondingigenvector are given by
1 3.0050 1.7722) (05379

A(¢)=l 0.3231 1 o.9sosiJ,\7V(¢f)={ 0.2058J-
05643 1.0516 0.2563

4, Conclusions

We have developed a method of obtaining the wirnfegin election by using reciprocal pairwise
comparisons. The literature has used pairwise aosyns but they have always been of an additive
nature. We have shown that because the resultaigxmof paired comparisons is a positive reciptoca
matrix, the winner of the election is given by twéncipal right eigenvector of the matrix. This timed
has some desirable properties when the recipraielige voting matrix satisfies the condition ofwo
dominance, a necessary and sufficient conditiorsdtisfying the axiom of independence from irrelgva
alternatives. We can now show that voting proffatisfying the row dominance condition do not diel
rank reversals when a candidate drops out of e ra
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Table 1. Profile ¢ voters’ preferences. Table 2. Profile ¢" voters’ preferences
with incomplete rankings

Oirelerings Woter Pairwise Preference Matrices Oirelerings Wioter Pairwise Preference Matricrs
1 1 3 5 1 1 3 5
123 0.33333333 1 5 1 3 3 0.33333333 1 5
ax o 1 ax ax 1
? 1 5 7 ? 1 3 5
.z 1 5 0.33333333 1 5
014255714 0.k 1 0.z 0.z 1
3 1 } 5 3 1 3 5
0.5 1 5 0.33333333 1 5
oz .z 1 oz oz 1
4 1 4 ] 4 1 E] L)
025 1 L) 0.33333333 1 L)
0.125 oz 1 oz oz 1
LR ) 1 0.{1001 0.{1001 a3 ) 1| 2142853714 o
TR 1 k] ¥ 1 &
L0000 0.335333333 1 E 2.2 1
[ 1 0.0001 0.0001 [ 1| 0142853714 a3
100300 1 1 7 1 5
10300 0.5 1 5 oz 1
7 1 (.00 (.00 7 1| 014283714 0.
10000 1 ¥ 7 1 5
10000 0.5 1 ) 0.z 1
1372 ] 1 7 3 13 32 ] 1 k) 3
014285714 1 oz oz 1 oz
(0.33333333 5 1 (0.33333333 k) 1
Q 1 ) 3 Q 1 ) 3
oz 1 oz oz 1 oz
0.33333333 4 1 0.33333333 ) 1
mn 1 4 3 n 1 ) 3
0. 16REERET 1 ax oz 1 ax
0.33333333 E] 1 0.33333333 ) 1
11 1 4 3 11 1 ] 3
.75 1 . .z 1 .
0.33313333 i 1 0.33313333 5 1
12 L 5 4 12 L 5 3
0k 1 a.x 0k 1 a.x
02 & 1 335333345 ] 1
312 13 1 (.00 (.00 3102 13 1 3 a2
10000 1 214285714 0.33333333 1| 214285714
10)00 7 1 k) 7 1
14 1 0.41001 0.41001 14 1 3 oz
10000 1 0142853714 01.33933333 1| 0142853714
10000 4 1 ) 7 1
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