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                                                                           ABSTRACT  
 
In this paper we develop a method based on the idea of pairwise voting to rank projects or candidates and 
incorporate in the ranking process how strongly the referees/voters feel about the comparisons they make.  
Voting is a modified form of ranking and all the votes are equally important.  However, there are 
situations similar to voting in which the votes are not just ordinal but each voter expresses an intensity of 
preference for the different candidates.  For example, ranking projects for funding.  We show that our 
method yields the same results as ordinal voting when the intensity of preferences tends to infinity.  
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1. Introduction 
One of the purposes of the electoral process is to elicit and measure the preference of voters. 

However, the use of voters' preferences is not limited to the election of government officials or board 
members in the public and private sector.  The voting process is also used to rank projects, e.g., in the 
National Science Foundation or the National Institutes of Health (NIH), and in general, to rank alternative 
courses of action.  In many cases, ranking from the voters’ preferences needs to be translated into 
priorities that can be used to allocate resources, such as prioritizing spending in a portfolio of research 
projects, when not all the projects can be funded due to budgetary constraints.  In general, NIH does not 
have all the necessary funds to support all the projects requesting funding.  Referees then are required to 
rank the projects making intensity of preference statements according to some pre-established 
dimensions, such as innovation, institution, researcher and so on, that will yield a cardinal ranking of the 
projects, i.e., the projects are assigned a score that help the referees decide how to fund them.  

In this paper we develop a method based on the idea of pairwise voting to rank projects or candidates 
and incorporate in the ranking process how strongly the referees/voters feel about the comparisons they 
make.  Although this is not a new problem as noted by (Cook et al., 2005) and (Hochbaum and Levin, 
2006), our approach is new. 

  

1.1. Notation and terminology 

Let  A = { a1,...,am} be a set of alternatives.  Let  Ν = {1,2,3,...}be the set of voters.  A preference 

orderσ = { ai1
,...,aim

}  is a ranking of the alternatives.  Let L(A ) be the set of all m! orders.  A profile on 

a group of voters 
 
M ⊂

≠
Ν is a mapping .  LetΦ be the set of all the possible profiles.  For 

 σ ∈L(A )  and φ ∈Φ let nσ (φ) be the number of voters in the profileφ that have the preference orderσ .  

A preference function is a mapping from the set of profilesΦ to the set of preference orders,

 f : Φ → L(A) .  A choice function is a mapping from the set of profilesΦ to the set of nonempty subsets 

of  A .  Let 
  
σ1(φ),...,σ

H
(φ)( )be the different orderings in the profile φ .  Let 

  
v

ij
σ

h
(φ) be the number 
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of voters who prefer i to j in the ordering   σ h
(φ)of profile φ.  Let

  
nσ h

(φ)be number of votes in the 

ordering   σ h
(φ)of profileφ .  Let 

  
w

i
σ

h
(φ) be the weight assigned to the ith alternative in the ordering 

  σ h
(φ)of profileφ . 

 

2. The Eigenvector Method For Pairwise Voting 
When people vote in favor of a candidate A versus a candidate B, they basically rank them and state 

that for example A is preferred to B, i.e.,  A f B .  If a population of N individuals vote to select between 
A and B, if n1  vote for A and n2 vote for B, then out of the total number of votes n1 + n2 , 

(n1 / n1 + n2 ) × 100percent have voted for A and the remainder for B.  Let us assume without loss of 

generality that n1 ≥ n2 .  So, for the population of N individuals how much strongly is candidate A 

preferred over candidate B?  The answer isn1 / n2  if 2 0n > .  The matrix of pairwise comparisons 

representing the relative strength of preference for the candidates is given by  

  

Voting Matrix Weights      

1
n

1

n2

n
2

n1

1





















n
1

n1 + n2

n
2

n1 + n2





















 

The voting matrix is a positive reciprocal matrix, i.e., if the entries of the matrix are denoted by ija , then 

1
ji ija a−= for all i and j.  Note that 

 

a
ij

≡
n

i

n
j

.   If instead of two candidates there are m candidates, then 

because people only vote for one candidate, the voting matrix would be given by  

 

   

W =

1
n

1

n2

L
n

1

nm

n
2

n1

1 L
n

2

nm

M M O M

n
m

n
1

n
m

n
2

L 1





























 (1.1) 

 

Multiplying this matrix by the column vector 
  
(n

1
,n

2
,...,n

m
)we get  
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1
n

1

n2

L
n

1

nm

n
2

n1

1 L
n

2

nm

M M O M

n
m

n
1

n
m

n
2

L 1





























n1

n2

M

nm





















= m

n1

n2

M

nm





















 (1.2) 

 
Since the trace of the matrix is equal to m, the trace of a matrix is equal to the sum of all its eigenvalues, 
and the rank of the W is equal to 1, we conclude that m must be an eigenvalue of W, and it is its largest 
eigenvalue in modulus.  By Perron-Froebenius’ theorem (Gantmacher, 1960) it is known that the largest 
(principal) eigenvalue of a nonnegative real matrix always exists and it is positive and real.  In our case, 
that eigenvalue is equal to m.  The right eigenvector associated with the principal eigenvalue is unique to 

within a multiplicative constant and it is given by 

   

n1

N
,
n2

N
,L,

n
m

N








T

, where N is the total number of 

voters.  The principal right eigenvector yields the correct percentage of votes for each of the candidates.   
This model assumes that people vote for one candidate only.  However, when a person can vote for 

more than one candidate the matrix of paired comparisons may be inconsistent (Saaty, 1986), i.e., the 
entries do not satisfy the condition ij jk ika a a= for all i, j and k.  In this paper we are concerned not just 

with people voting for multiple candidates but ranking them in term of preference.   
Recall that we denoted by ( )ijv φ the number of voters in a profile φ that prefer candidate i to 

candidate j.  Let 

  

a
ij
(φ) ≡

v
ij
(φ)

v
ji
(φ)

, ( ) 0jiv φ > .  Note that even if the profile φ contains all m! preference 

orders, the voting matrixA(φ)  whose entries are given by
( )

( )
( )

ij
ij

ji

v
a

v

φ
φ

φ
≡ , ( ) 0jiv φ > , may not be 

consistent.  So the task is to synthesize from the ratios of preferences a vector that best represents the 
voters’ preferences.   

 

2.1. Properties of the Eigenvector Method 

In general, when the voting matrix of pairwise comparison ratios is not consistent, it is not possible to 

infer from 

  

a
ij
(φ) ≡

v
ij
(φ)

v
ji
(φ)

> 1 that alternative i defeats alternative j.  Let w(φ) be the principal right 

eigenvector of the matrix A(φ) , i.e., A(φ)w(φ) = λmaxw(φ) . 
 

Definition:  A reciprocal pairwise voting matrix { }( ) ( )ijA aφ φ=
 
satisfies row dominance if and only if 

for any two rows i and j, aih (φ) ≥ a jh (φ)  or aih (φ) ≤ a jh (φ) , for all h.  Thus, a profile satisfies row 

dominance if its corresponding reciprocal pairwise voting matrix satisfies it. 
Note that becausevih(φ) + vhi (φ) = v jh (φ) + vhj (φ) = N thenaih (φ) ≥ a jh (φ) implies vih (φ) ≥ v jh (φ) .  

Row dominance defines a strong order on the set of alternatives.  
Theorem 1:  The eigenvector method on profiles that satisfy row dominance is Condorcet. 
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Definition:  A voting method f is said to be consistent if and only if given two disjoint profiles φ ' and φ ''
on which the method yields the same consensus ordering, i.e., f (φ ') = f (φ '') , it yields the same 

consensus ordering on the joint profile φ = φ '∪φ '' , i.e., f (φ) = f (φ ') = f (φ '') . 
Lemma 1: The union of two disjoint profiles that satisfy row dominance and yield the same order on the 
alternatives satisfies row dominance and yields the same order. 

Lemma 2: Given a profile φ  with corresponding reciprocal pairwise voting matrix 

  

A(φ) =
v

ij
(φ)

v
ji
(φ)









  

that satisfies row dominance, if for any i and j, aih (φ) ≥ a jh (φ) , for all h, then wi (φ) ≥ w j (φ) , where

w(φ) = wi (φ)( )T
is the principal right eigenvector of the reciprocal pairwise voting matrix ( )A φ . 

Theorem 2: The eigenvector method on profiles that satisfy row dominance is consistent.   
Definition: A voting method satisfies independence from irrelevant alternatives (IIA) if the 
addition/deletion of an alternative to a profile does not alter the consensus ordering obtained from the 
original profile. 

Let φ be a profile with m alternatives, let 

  

A(φ) =
v

ij
(φ)

v
ji
(φ)









  be the associated reciprocal pairwise 

voting matrix, and let ( )w φ be the corresponding principal right eigenvector of ( )A φ .  Let 'φ be the 

profile resulting from the addition of a new alternative, let
( ')

( ')
( ')

ij

ji

v
A

v

φ
φ

φ
 

=   
 

 be the associated reciprocal 

pairwise voting matrix, and let ( ')w φ be the corresponding principal right eigenvector.  The matrix 

( ')A φ is given by
1

1

( ) ( ')

( ') 1
1

( ')

m

m

A a

A

a

φ φ
φ

φ

+

+

 
 =  
 
 

 where 1( ')ma φ+  is an 1n×  vector given by

   

a
m+1

(φ ') =
v

1,m+1
(φ ')

v
m+1,1

(φ ')
,L,

v
n,m+1

(φ ')

v
m+1,n

(φ ')











T

. 

Theorem 3: The eigenvector method on profiles with row dominance satisfies independence from 
irrelevant alternatives. 
Corollary: The eigenvector method on profiles that satisfy row dominance satisfies the independence of 
clones criterion.      ♦ 

A condition that is weaker than row dominance is N-dominance. 
Definition: A reciprocal pairwise voting matrix   A(φ) is N-dominant if there exists a positive integer N 

such that for all  n ≥ N , and any two rows i and j the nth power of   A(φ) , , satisfies 

  
a

ih
(n)(φ) ≥ a

jh
(n)(φ) or

  
a

ih
(n)(φ) ≤ a

jh
(n)(φ) for all h. 

Lemma 3:  A reciprocal pairwise voting matrix without preference loops is N-dominant. 

Lemma 4: Let   A(φ)be a reciprocal pairwise voting matrix, and let w(φ) = w1(φ),...,wn (φ)( )T

 be its 

principal right eigenvector.  Let
  
A(φ)n = a

ij
(n)(φ){ }be the nth power of  A(φ) .  Then 

  
lim
n→∞

A(φ)n * Diag[ A(φ)n ]−1 = w(φ) *[ w(φ)T ]−1
 

  
A(φ)n = a

ij
(n)(φ){ }
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where 

   

Diag[ A(φ)n ] =
a

11
(k )(φ) L 0

M O M

0 L a
nn
(k )(φ)

















. 

Theorem 4: Row dominance is a necessary and sufficient condition for the Eigenvector Method of 
Pairwise Voting to satisfy Independence of Irrelevant Alternatives. 
 

3. Pairwise Voting With Intensity Of Preferences 
In elections, voting is a modified form of ranking and all the votes are equally important.  However, 

there are situations similar to voting in which the votes are not just ordinal but each voter expresses an 
intensity of preference for the different candidates.  For example, ranking projects for funding.  The 
voters, in this case they are called referees, score the different projects according to some criteria.  The 
scores are then used to rank the projects.  The National Institutes of Health use such a system and so does 
the National Science Foundation.  In general, due to the large number of projects that need to be ranked, it 
is possible that some referees only rank some but not all projects.  In this case the projects need to be 
scored so that they can be compared with the scores of other similar projects and the ranks merged.  But 
within a subgroup of projects the referees score all the projects.  Thus, we can assume without loss of 
generality that all the referees rank all the projects. 

3.1 Ranking with Complete Pairwise Comparisons 

Ranking can be considered a limiting condition of pairwise comparisons.  Consider two projects   a1

and   a2
.  Comparing them according to a criterion we can express how strongly we prefer one project to 

the other.  For example, if   a1
is preferred to   a2

with intensity a the result is a reciprocal matrix of pairwise 

comparisons given by 

  

a
1

a
2

a
1

a
2

1 a

a−1 1











 

 

This matrix has a principal right eigenvector given by 

  

a

1+ a

1

1+ a











T

that converges to the vector 

  (1,0)T as  a → ∞.  Thus, the ordinal ranking of the two projects is equivalent to pairwise comparing them 
with an intensity of infinity of one project over another.   

Given a profile 

  

φ =

(n1>2) (n2>1)

a
1

a
2

a
2

a
1

















the pairwise voting matrix is given by 
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. 

If all the voters that prefer  ai
to 

 
a

j
have an intensity of preference 

 
a

ij
then we can represent the 

pairwise voting matrix as follows so that when 
 
a

ij
→ ∞we obtain the pairwise voting matrix given 

above: 
 

1

a1>2

a1>2 +1







n1(φ)

a2>1

a2>1 +1







n2(φ)

a2>1

a2>1 +1







n2(φ)

a1>2

a1>2 +1







n1(φ)

1

































 

and the principal right eigenvector of this matrix is given by  
 

a12

a12 +1







n1>2(φ)

a12

a12 +1







n1>2(φ) + a21

a21 +1







n2>1(φ)

a21

a21 +1







n2>1(φ)

a12

a12 +1







n1>2(φ) + a21

a21 +1







n2>1(φ)































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If all the voters have different intensity of preference 
  
a

i> j
(k ), then the pairwise voting matrix is given by  

  

a1

a2

1
n1(φ)

n
2
(φ)

n
2
(φ)

n
1
(φ)

1

















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1

a12
(k )

a12
(k ) +1






k=1

n1>2 (φ )

∑

a21
(k )

a21
(k ) +1






k=1

n2>1(φ )

∑

a21
(k )

a21
(k ) +1






k=1

n2>1(φ )

∑

a12
(k )

a12
(k ) +1






k=1

n1>2 (φ )

∑
1

































. 

 
Finally, if we compare m projects the pairwise voting matrix with intensity of preferences would be given 
by  

 

 

A(φ) =

1

a12
(k )

a12
(k ) +1k=1

n1>2 (φ )

∑

a21
(k )

a21
(k ) +1k=1

n1<2 (φ )

∑
L

a1m
(k )

a1m
(k ) +1k=1

n1>m (φ )

∑

am1
(k )

am1
(k ) +1k=1

n1<m (φ )

∑

− 1 L

a2m
(k )

a2m
(k ) +1k=1

n2>m (φ )

∑

am2
(k )

am2
(k ) +1k=1

n2<m (φ )

∑

M M O M

− − L 1





































 (1.3) 

  

where 
  
n

i> j
(φ)  and 

  
a

ij
(k )represent the number of voters that prefer i to j and the intensity with which the 

kth voter prefers i to j, respectively.  Note that when 
  
a

ij
(k ) → ∞,  for all i and j , the pairwise voting matrix 

converges to the matrix  

 

 

W (φ) =

1 w12(φ) L w1m (φ)

w21(φ) 1 L w2m (φ)

M M O M

wm1(φ) wm2(φ) L 1



















 (1.4) 

 

where wij (φ) =
ni> j (φ)

n j>i (φ)
,  n j>i (φ) > 0. 

3.2 Example 

Consider the following voting profile 



Proceedings of the International Symposium on the Analytic Hierarchy Process 2013 

  

       (4) (3) (5) (2)

φ =

a1 a2 a1 a3

a2 a3 a3 a1

a3 a1 a2 a2

















 
The reciprocal pairwise voting matrix and its corresponding principal right eigenvector are given by  

  

A(φ) =
1 11/ 3 9 / 5

3/11 1 7 / 7
5 / 9 7 / 7 1

















,  w(φ) =
0.5605
0.1938
0.2457

















. 

Let us assume that the voters express their intensity of preferences as given in Table 1.  Synthesizing the 
judgments using (1.3) we get the matrix and corresponding eigenvector 

 

  

Â(φ) =
1 3.4547 1.8862

0.2895 1 0.9893
0.5302 1.0108 1

















,ŵ(φ) =
0.5594
0.1974
0.2432

















 (1.5) 

 

3.3. Ranking with Incomplete Pairwise Preferences 

Let us now assume that the voters do not produce all possible orderings of the candidates to make it 

possible to have wij (φ) =
ni> j (φ)

n j>i (φ)
,  n j>i (φ) > 0for all i and j.  Thus, there exist some i and j such that

  
n

i> j
(φ) > 0 but 

  
n

j>i
(φ) = 0.  This can happen in three situations: (a) Nobody ranks j ahead of i; (b) i is 

not even ranked by some of the voters; and (c) some voters do not rank a candidate but there does not 
exist a pair i and j as in case (a).  Examples of cases (a), (b) and (c) are the profiles  φ ' ,  φ " and  φ ''', 
respectively:  

  

       (4) (3) (5)

φ ' =

a1 a1 a3

a2 a3 a1

a3 a2 a2

















  

       (4) (3) (5) (2)

φ " =

a1 a2 a1 a3

a2 a3 a3

a3 a2 a2















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       (4) (3) (5) (2)

φ ''' =

a1 a2 a1 a3

a2 a3 a3 a2

a3 a2 a1

















 
The reciprocal pairwise voting matrices are given by  

  

A(φ ') =
1 12 / 0 7 / 5

0 /12 1 4 / 8
5 / 7 8 / 4 1

















  

A(φ ") =
1 9 / 0 9 / 0

0 / 9 1 7 / 7
0 / 9 7 / 7 1

















   

A(φ ') =
1 9 / 2 9 / 2

2 / 9 1 7 / 7
2 / 9 7 / 7 1

















 
 
In case (a) a way to provide a solution would be to introduce a phantom voter that prefers j to i.  This will 
work as log as the number of voters is not too small.  Case (b) can be easily handled using intensity of 
preferences.  Case (c) does not pose problems because the pairwise voting matrix does not have any 
zeros.  Table 2 shows the intensity of preferences of the voters for profile  φ " .  Using (1.4) the reciprocal 
pairwise voting matrix and corresponding eigenvector are now given by  



L.G. Vargas/ Voting with intensity of preferences 

  

Â(φ ") =
1 2.4166 1.4463

0.4138 1 0.9893
0.6914 1.0108 1

















,ŵ(φ ") =
0.4821
0.2359
0.2819

















. 

3.4. Ranking from Weights 

Profiles do not always have to be of an ordinal type.  Assume that each voter has a set of priorities 

assigned to the alternatives.  Let   w
(k )(φ)be the priorities of the kth voter in profile φ .  From these 

priorities we can estimate the reciprocal pairwise matrix of preferences of the voters 
  
a

ij
(k )(φ) by 

  

â
ij
(k )(φ) =

w
i
(k )(φ)

w
j
(k )(φ)

.  The reciprocal pairwise voting matrix is obtained using (1.3).  For profile φ , the 

reciprocal pairwise voting matrix and corresponding eigenvector are given by 

  

Â(φ) =
1 3.0950 1.7722

0.3231 1 0.9509
0.5643 1.0516 1

















,  ŵ(φ) =
0.5379
0.2058
0.2563
















. 

 

4. Conclusions 
We have developed a method of obtaining the winner of an election by using reciprocal pairwise 

comparisons.  The literature has used pairwise comparisons but they have always been of an additive 
nature.  We have shown that because the resulting matrix of paired comparisons is a positive reciprocal 
matrix, the winner of the election is given by the principal right eigenvector of the matrix.  This method 
has some desirable properties when the reciprocal pairwise voting matrix satisfies the condition of row 
dominance, a necessary and sufficient condition for satisfying the axiom of independence from irrelevant 
alternatives.  We can now show that voting profiles satisfying the row dominance condition do not yield 
rank reversals when a candidate drops out of the race. 
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Table 1. Profile φ voters’ preferences.  Table 2. Profile  φ " voters’ preferences  
with incomplete rankings 
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