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Abstrabt 
This paper describes two technical subjects of the Analytic Hierarchy Process. The first one 

relates with group decision making. When we estirnate the relative distance between cities or the 
relative area of figures by the AHP, it is often observed that a group decision usually outperforms 
an individual one. This note addresses this phenomena and shows that the accuracy of estimates is 
improved in approximate proportion to the square mot of the number of individuals in the group. 

The second one deals with the method for estiMating the relative weight of alternatives when 
some entries of the pairwise comparisons matrix areimissing, based on the geometric mean method. 

1 Group vs. Individual Decision Making in the AHP 

1.1 Introduction 
Saaty's AHP [3] is now being widely used for decision making purposes. One of the important factors 
in the AHP is the pairwise comparison of alternatives (or criteria) in the problem. Usually, there are 
two kinds of pairwise comparison, i.e., by an individual and by a group. In classroom experiments for 
measuring the relative distance between cities on a map or the relative area of figures, the author has 
often observed the result that a group decision outperforms an individual one in accuracy. This section 
shows that theoretically, the accuracy of estimates is improved in approximate proportion to the square 
root of the number of individuals in the group, if the members are unbiased and homogeneous. 

I 
j 

1.2 Eigenvalue Method and Geometric Mean Method 
i Let the pairwise comparison matrix be i 

A =kii], 

where ail = 1 (i = 1,..., n), aii = Vair (V (i,j)), and 
for estimating the relative weight of the alternativeS. 

1. Eigenvalue Method: 1 
1 

This method solves the principal eigenvalue of A and its eigenvector. Let the eigenvalue and the 
eigenvector be Amex and v, respectively. We assume the eigenvector is normalized so that the sum 
of the elements of v is 1. i 

1 
2. Geometric Mean Method: 1 

The geometric mean method (GM) or the logarithmic least squares method works as follows: Min-
imize, with respect tog = (gs) E RTh , I 

n I E (log aii — log gigi )2 . (2) 
ihi--.1 ! 

It turns out that a. GM (LLSM) solution g is given by the geometric mean of elements in each row 
1 

of A, i.e., I 

\I= 
ill 

gi . H clip (i = 1, ... , v.) (3) 

i t 
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(1) 

aij > 0 (V (i, j)). There are two methods 



The vector g is normalized as 

9: 4— 91 / gi = 1, 2, • • - Th. (4) 
j=1 

The two approaches give almost the same weights v and g', if the matrix A is nearly consistent. (See 
Golden and Wang [11 and Tone [71. Also, see Takeda [61 for further extensions of the geometric mean 
method.) So, hereafter, we will deal with the geometric mean method (GM), since GM is easier for 
analyzing the above mentioned subjects. 

1.3 Perturbation of Pairwise Comparison Matrix 

We assume that the true weight vector to = (w,) exists. The (i, j) element of the ideal comparison matrix 
is expressed as 

WI 

W • 

The estimated comparison value aq is an approximation to wilwa and let relate with it by 

WI eaij = —e • , w - .1 

(5) 

(6) 

where cii is a rand.= variable representing the deviation from the true value. We assume that egi has 
the mean zero and the variance 

The above setting matches with the exponential scoring of pairwise comparisons. If cti is small, then 
we have 

etil = 1+ cid + 0(4). (7) 
Therefore, (6) can be written as 

tau- = — + eii + 0(eij)). w • 
Thus, cis can be interpreted as a relative error to wawi. 

1.4 Effect of Perturbation on Weight 

If we calculate the weight by GM, using the perturbed matrix (6), we have 

wi 8(E;=i c;1)/v 
gi =   , ki =1 

j=1 J 

where e = 0 (Vi). By normalizing g, we have the estimated weight 

wie(E;=1`ii)in 
91 = .

7". Jw •e(E:=1 elk fi n

Under the small ski hypothesis, g: can be approximated by 

tin _L.{E(wk _ + i) Chi + E wi_wk
k=1 k=1+1 

+ ik • 
i<kak#0 

(8) 

(9) 

(10) 

376 



Let us observe the first order term in sin (11), which can be regarded as the relative error of the estimated 
g: from w; under the small c hypothesis: 

1 
(wk —w, + 1) ck, + E (wi _Wk — 1)51k (12) 

.41 k=i-1-1 

+ E (wi _woe), . (i. 1, , n) 

= 

<k ,C1sk#0 

If we assume that cik distributes independently with the mean 0 and the variance o-2, then Si is a random 
variable with the mean 0 and the variance V; as 

s, 

(See Appendix for derivation). Since, 

E
3=1 

(13) 

(14) 

we have: 
Theorem 1 The estimated g: has a relative error approximately proportional to crirn. 

1.5 Effect of Group Decision on Weight 
We observe the case where m individuals do the pairw se comparisons independently and make the matrix 
A by their geometric mean. Thus, we have 

Wi (rn ciik)f. aij = _ e kr-1 , (15) 
to, i 

where 515k is a random variable corresponding to the error term of the k-th individual. The group decision 
weight can be determined by the row-wise geometric mean of A: 

I i I 

§i = I  
(E : =1 E ki t C E P nia . (i = 1,...,n : c - — 0) (16) 

w; 

Vil,7=1 wi 

In the same way as (11), we can approximate gi by 

{= Wi 

1 m i-1 

gi 1 — *am E{E (Wh —vii + 1) ehih (17) 

k=1 h=1 

+ E (wi-wh- 1)514k ± E (v3 -14)c, 1 

4=1+1 1 :1<hki,h0i) 

1 I 

2 ° (C2Isk )1 • I 
+ (min) 

Here again, we assume that sihk(V(jhk)) subjectst to a distribution with the mean 0 and the variance 
c2,i.e., unbiased and homogeneous. Under the small c hypothesis, the first order terms of c in (17) 
correspond to the relative error of 4'; to 214, whose mean is 0 and variance is: 

= 
a2 

n E _ 2w;
77.771. 

(18) 

By comparing (18) with the individual case (13) discussed in the preceding subsection, we have: 

Theorem 2 The group decision by rn individual) reduces the error of the estimated weight by the factor 
11Fn, if the members of the group are unbiased iand homogeneous. 
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1.6 Concluding Remarks 
This section discussed the relative error of judgements by the geometric mean method in terms of the 
relative error in the pairwise comparisons and evaluated those of individual and group decisions. As a 
consequence, we showed that the group decision improves the accuracy of estimated weight in propor-
tion to the square root of the number of individuals in the group, if the members are 'unbiased and 
homogeneous'. On the 'unbiased' issue, the approximate Consistency Index (C.I.) below can be usefully 
applied. • 

En._-1 =1En. ai-(gVg!)— n2
C.I. (19) 

n(n — 1) 

If a member's C.I. (or the corresponding C.R.) is greater than 0.1, his comparison matrix must be retried 
or deleted from the group decision. As to the 'homogeneity' issue, Saaty 151 will contribute to a better 
understanding of the matter. 

2 A Logarithmic Least Squares Method for Incomplete Pair-
wise Comparisons Matrix 

2.1 Introduction 
One major drawback of the AHP is that at each level in the hierarchy, n(n — 1)/2 questions must be 
answered. The number of questions grows very large with TZ. In addition, for certain pairs (i, j), it is very 
difficult to answer the question "compare i against j". This results in some entries of A being missing. 
Therefore, methods for estimating the weight of alternatives from the incomplete matrix are requested. 
Harker [2] solved this problem effectively in the framework of the eigenvalue method. The main purpose 
of this section addresses the solution to the incomplete matrix problem by the logarithmic least squares 
principle. 

2.2 Logarithmic Least Squares for Incomplete Pairwise Comparisons Matrix 
We can define an undirected graph corresponding to the paired comparisons with the vertices 1, 2, ..., n 
and with arcs (1, j) if i and j are compared directly. 

Definition 1 We call a pairtoise comparisons matrix incomplete, if 

1. the corresponding graph is connected and 

2. is not a perfect graph. 

Let an incomplete matrix be A = (aii). For each vertex i, we define Pi as the set of vertices adjacent to 
i and Ni as the degree of 1 , i.e., the number of arcs connected to i. Since the graph is connected, for 
each i, Pi is nonempty and Ni > 1. For the missing matrix entries aij, let us approximate their value by 
the ratio of the (yet unknown) weights gilgi. For the purpose of obtaining the weight g, we solve the 
following logarithmic least squares problem: 

minimize E (log aii — log gi + log y5)2 (20) 
id 

{ = E E (log aq — ioggi + logg5)2
1.1 jEp;

The problem results in a set of linear equations in (logy) as 

P4 logs; — E log, = E log au. (i =1, 2,... ,n) (22) 
iePi lEP. 

(21) 
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Example 1 
The matrix below has entries (1,3), (2,4) and (3,4) missing. 

1 aiz 19iigs 
A—' an 1 a23 

93/fil a32 1

ain 94/92 94/93 

The corresponding linear equations are 

2 —1 0 —1 loggi 
—1 2 —1 loggz 

( 

0 —1 1 0 logi1
93 

) ( ) 

—1 0 0 1 10g94 
I 

614 

92/94 

93/94 ) • 

log anai4
= log anan . log as2

log an 

The rule for constructing the coefficient matrix of ithe linear equations is: 
(1) Put —1 on the compared entries and 0 on the missing ones, and 
(2) on the diagonal entries, put the number of —is on the row. 

ILet the coefficient matrix be D. Then, we have 

Theorem 3 The rank of the matrix D is n —1, if and only lithe graph of the pairwise comparisons is 
connected. 

I 
Proof. First, we show the `if-part'. Since the sum of n row vectors of D is zero, the rank of D is less 
than n — 1. Let D„-1 be the left upper (n — 1) x (n — 1) matrix of D. For a vector x = (xi) E R  the 
quadratic form associated with D,,1 is: 

n-1 

Q = xTDn_ix = E Nix? +2 E duzix, 
1<i<j<n-1 

n-1 n-1 

E (x, E + E x? 
1<14<n-1, cIii=-1 1=1 5=14 1

We observe the case Q = 0. 
(0 lithe first term (x1 —x)2 on the right-hand side 
the condition Q = 0, 

(23) 

(24) 

f (24) is not vacant, then, for each i, we have, under 

xi = (Vj E Pi) (25) 

Furthermore, at least one of xi and (xi) (j E F1) has the term xF or x.? in the second term on the right-
hand side of (24), since otherwise the vertices xi Ind (xi) (j E Pi) are disconnected to the remaining 
ones and this contradicts the connected graph hypothesis. Thus, we have, for each i in the first term, 

= xi eij E PO= O. (26) 

(ii) For r k not included in the first term, we have F.? in the second term. Hence xk = 0. 
Thus, if Q = 0, then z = 0. Therefore, all the eigenvalue of Dr1  is positive and the rank of D, 1 is 

n — 1. 
The 'only-if' part can be demonstrated as follows. Suppose the graph is disconnected. Then, the 

matrix D can be decomposed, after rearrangement; into 

X) D = 
132 

(27) 
1 

where Di E /P int , D2 E R("- "U x("- "I) and ni > 0. The ranks of DI and D2 are less than or equal 
to n1 — 1 and it — ni — 1, respectively. Hence, th rank of D must be less than or equal to it — 2, since 
the rank is the maximum number of linearly independent columns (or rows) of the matrix. El 
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2.3 A Geometric Mean Method for Incomplete Pairwise Comparisons 

Based on the preceding theorem, a geometric mean method for incomplete pairwise comparisons goes as 
follows: 

1. Let any one of (loggi) (5 = 1,...,n) be zero and solve the equations (22) in remaining (n — 1) 
unknowns. 

2. Obtain the weight gi from logy, for (5 = n). 

3. Normalize (9j) so that 
95 = ..., n) 

Ek=.1 9k 
(28) 

Example 2 
Let an incomplete pairwise comparisons matrix A be as below, where the symbol — stands for uncompared 
entries: 

1 — 3 2 

A—' 1 9 6 
1/3 1/9 1 — 
1/2 1/6 — 1 

The corresponding linear equations are 

2 0 —1 -- 1 logy/ 1og3 x 2 ( 
0 2 —1 10g92 = 1og9 x 6 

—1 —1 2 0 J logy3 log(1/3) x(1/9) ' 
—1 —1 0 2 log 24 log(1/2) x (1/6) 

We assume logg4 = 0 and solve the system for logy (5 = 1,2,3) which gives 

log pi = log 2, 10g92 = log 6, logy3 = log(2/3), log 24 = 0. 

Thus, we obtain the normalized weight 

gt = (0.207, 0.621, 0.069, 0.103). (29) 

2.4 Concluding Remarks 

This section dealt with the incomplete pairwise comparisons in the AHP within the framework of the 
logarithmic least squares method. It is easy to see that the weight thus obtained has perfect consistency, 
if the estimates in the compared entries are consistent. A measure of consistency can be defined by 

G = 
E7-11Vi 

EL ( EiEp, augilei — Ni 
(30) 

which is an average deviation of the compared estimate aii from gihi. Obviously, G is nonnegative and 
equal to zero if and only if the estimate 041 satisfies 

ay = (@, .5)). 

However, it should be noted that, if, in the most incomplete case, the graph is a spanning tree, the 
calculated weight (th) is always consistent and hence G = 0. This observation suggests the need for other 
indices of accuracy of measurement for incomplete comparisons. This is a future research subject. 

(31) 
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1 

Appendix: Derivation of (13) 

2 
6  E(wk _ wi+i)2 + E (w n2 k=1 2=41 

}_ WE_ 1)2 + E (2,,i _ wo2 
i <k Ai .,‘ 0 

2r 
t —..ft 

r-- 
W L oni —wk —1)2 + Ink? 

k=1(k i) iCk,(j,k#i) 

I  
= 

C2 
n 

2 
{i<k

(W

j 

- W kr +(n — 1)— 2(n — 1)w; + 2 E W k 

k=1,*i 

ra a2 
= 2 72 (n — 1)E w, _ 2 Eiviwk —1 2nw; -I- n +1 

i a In 02= —i- 71 E t14 — 
n  3

— 241+ n +1 n r
j=1 
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