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ABSTRACT 
 

The primary objective of this paper is to propose a consistency test for ordinality of items in a pairwise 
comparison matrix in the Analytic Hierarchy Process (AHP) as in a sensory test. A pairwise comparison 
matrix in AHP consists of elements expressed on a numerical scale. Since we can consider a numerical 
scale as an ordinal scale, we can transform the pairwise comparison matrix to one expressed on an ordinal 
scale. Additionally, we are interested whether the hypothesis that items in a pairwise comparison matrix 
are ranked linearly according to the transformed one is valid or not. In 1940 Kendall and Babington Smith 
proposed a consistency test about ordinality of items using the number of circular triads in a preference 
table without ties and we have used it now in a sensory test. In this paper we show how to apply their test 
to a pairwise comparison matrix in AHP. Difficulties have been apparent when applying it to a pairwise 
comparison matrix with a tie in AHP, though it is easier to do so without ties. As a consequence, we 
propose a method of applying it to one with a tie in AHP. Furthermore, we have researched a method of 
describing a pairwise comparison matrix in which relations among items can easily be observed, for 
instance rough-and-ready ordinality of items. A further purpose of this paper is to propose useful notation 
of a pairwise comparison matrix in AHP with some conditions and enumerate an example of showing its 
effectiveness. 
 
Keywords: pairwise comparison matrix, consistency test, circular triad, notation 
 
1. Introduction 
In the analytic hierarchy process (AHP) by Saaty we firstly structure a hierarchy in order to clarify a 
given problem. Next by pairwise comparisons between items, which are criteria or alternatives, we obtain 
the pairwise comparison matrix about them and calculate their relative weights by the eigenvalue method 
or the logarithmic least square method. Finally we have weights of alternatives for the main objective 
aggregating the relative weights of items. 
 
In this paper we deal with a pairwise comparison matrix by a decision maker. The primary objective of 
this paper is to propose a consistency test for ordinality of items in a pairwise comparison matrix in AHP. 
This test is to check whether or not we can accept items which were compared pairwisely are ranked 
linearly by the pairwise comparison matrix. In (Iida, 2009) we showed this test for a pairwise comparison 
matrix without a tie between different items which is introduced briefly in Section 2.1. In Section 2.2 we 
propose a method in the case that a pairwise comparison matrix has a tie between different items.  
 
Jensen and Hicks (Jensen and Hicks, 1993) researched the relationship between the number of circular 
triads in a pairwise comparison matrix and inconsistency of the matrix in AHP. Though the purpose of 
their paper is different from one of this paper, they dealt with a pairwise comparison matrix with a tie 
between different items in their paper. 
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For example we can always calculate the weights of items from any given pairwise comparison matrix in 
AHP. So it is convenient to check whether or not we accept that the given items are ranked linearly before 
estimating those weights. In AHP, in general, we use a ratio scale with integers 1 to 9 and the reciprocals 
of them. Because this test is a kind of ranking problem, we deal only with up to 9 items and pairwise 
comparison matrices for them in this paper. 
 
Furthermore, when considering ranking problems, it is useful to describe a pairwise comparison matrix 
which seems to show the ranking of items intuitively. In the rest of this paper we define such notation of a 
pairwise comparison matrix though this description doesn’t have uniqueness.  
 
2. Ordinality consistency test about items in a pairwise comparison matrix 
In this section we explain how to test whether or not we can accept that items in the pairwise comparison 
matrix are ranked linearly. This is an arrangement of the test used in a sensory test (cf. (Research 
Committee, 2002)). In AHP we use the scale {1/k, k | , k is an integer} to make a pairwise 
comparison matrix A = (aij). If we have aij >1, then we describe  and construct a directed graph 

AG from A. So we can discuss the number of circular triads which are  
( ). A circular triad was called 3-cycle in (Saaty, 1977, 1980). It is well-known that 
circular triads cause the inconsistency of a pairwise comparison matrix. In fact if a pairwise comparison 
matrix is completely consistency, then there is no circular triad in it. We notice that the probabilities of 

and are equivalent to each other when we take at random a value aij from the scale 

{1/k, k | , k is an integer} for items Oi and Oj ( ). 
 
We need for this test the following tables, which have the maximum values  of the number of circular 
triads d for each n ( ) satisfying that probability Pr[ ] <  for  and 0.1, 
respectively (see Remark 1). These values were calculated by Kendall and Babington Smith (Kendall, and 
Babington Smith, 1940) when and by Alway (Alway, 1962) when  and 9. We use  
for  according to (Research Committee, 2002) in a sensory test. 
 
Table 1. The maximum number in the numbers of circular triads d for n items such that Pr[ ] 
<  for or 0.1 

n 3 4 5 6 7 8 9 
d0.05,n 0 0 0 1 3 7 13 
d0.1,n 0 0 1 2 5 9 15 

 
Remark 1. (1) For n=3 to 5 (for n=3 and 4) there is no the maximum number of circular triads satisfying 
Pr[ ] <  for  ( ), respectively, though we filled in 0 for these n. It is natural 
because the matrix is completely consistent if there is no circular triad in a pairwise comparison matrix. 
(2) Though Pr[ ] 0.051 for n=6, Pr[ ] 0.117 for n=5, Pr[ ] 0.120 for n=6 
and Pr[ ] 0.112 for n=7, we set d0.05,6=1, d0.1,5=1, d0.1,6=2 and d0.1,7=5 in Table 1, respectively,  
in consideration of the distribution of d being discrete. 
 
In a sensory test we use Table 1 to check whether or not an observer who makes pairwise comparisons is 
sufficiently capable of making judgments with assumption that objects are ranking linearly. On the other 
hand in AHP we use Tables 1 to check whether or not items are ranked linearly under the assumption that 
a decision maker is sufficiently capable of making judgments. Indeed if a decision maker is not capable of 
making pairwise comparisons, we should not use the AHP method. 
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Now we explain the consistency test for ordinality of items by the pairwise comparison matrix. It is clear 
that if the given items in AHP are ranked linearly, the pairwise comparison matrix on the AHP’s scale 
contains no circular triad by the right judgments of a decision maker who is capable of making 
judgments. On the other hand a pairwise comparison matrix may contain some deviation. So we think that 
we can accept that the items are ranked linearly if the number of circular triads in the pairwise comparison 
matrix for n items ( ) have less than or equal to for or 0.1. We divide them into two 
cases according to whether a pairwise comparison matrix contains a tie between different items or not. 
 
2.1 Test for a pairwise comparison matrix without a tie between different items 
According to (Iida, 2009) we explain the procedure (Step 1)–(Step 3) to test whether we can accept that 
items are ranked linearly or not, under the hypothesis that the decision maker is capable of ranking the 
given items. We suppose that a decision maker compares n items ( ) pairwisely to get a pairwise 
comparison matrix A = (aij). We decide between significant levels =0.05 and 0.1. We recommend 

=0.1 because human decision making is essentially ambiguous though the traditional tests in a 
statistical method adopting =0.05. 
 
(Step 1) Count the number of integers j such that aij > 1 for each i-th row, which is denoted by ai. 
(Step 2)  Calculate the number d of circular triads in A using the following; 

 

(Step 3) If from Tables 1, then we can assume that items are sufficiently ranked linearly.  
 
Otherwise we cannot do so.  Then we have some solutions as follows; 
 
(1) We refer to the following coefficient of consistency  for A in order to estimate directly whether 
items are ranked linearly or not; 

, where  

where d is the number of circular triads in A which is calculated in (Step 2) and s is the possible 
maximum value of the number of circular triads in pairwise comparison matrices for n items. The 
coefficient of consistency  was defined by Kendall and Babington Smith. If  is near to 0, then the 
hypothesis that items are ranked linearly should be rejected as in a sensory test. This coefficient in AHP 
was mentioned in (Saaty, 1971, 1980) and was researched in detail in (Jensen, 1993). 
(2) We recheck some elements aij in A. For instance, a consistency improving method by graph theory is 
proposed in (Nishizawa, 1995). When in the end, the followings are considered (see (Kendall, 
and Babington Smith, 1940)). 
(a) Some of the items may differ by amounts which fall below the threshold of distinguishability for the 

decision maker. 
(b) The property under judgment may not be a linear variate at all. 
(c) Several of the effects may be operating simultaneously. 
 
Remark 2. (1) The formula in (Step 2) for the number of circular triads d in A is by Kendall and 
Babington Smith (Kendall, and Babington Smith, 1940). 
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(2) It is natural to consider that if the pairwise comparison matrix made by a decision maker has no tie 
between different items, the same pairwise comparison matrix is given even though he or she uses the 
scale {1/k, k | , k is an integer} instead of the scale {1/k, k | , k is an integer}. 
(3) This test should be used in order to rank some items subjectively by a decision maker though AHP is 
used, for instance, for sport games or matches among n teams. 
 
Here we have the following theorem to easily check whether or not items are ranked linearly by the given 
pairwise comparison matrix. 
 
Theorem 1. Let A = (aij) be a pairwise comparison matrix for n items (n  3) in AHP. For each integer i 
such that , we set ai the cardinal number of {aij | } and S = { ai | }. Then 
S = {0, 1,…, } if and only if there exists no tie and no circular triads in A. Consequently, the items 
corresponding to A are completely ranked linearly. 
 
Proof. It is easy to see. 
 
Example 1. It follows from Theorem 1 that the following pairwise comparison table has no circular 
triads. In fact we have n=7 and S={0, 1, …, 6} in Theorem 1. 
 
Table 2. Trivial example of a pairwise comparison table without a circular triad 

 O1 O2 O3 O4 O5 O6 O7 ai 
O1 1 2 3 4 5 6 7 6 
O2 1/2 1 2 3 4 5 6 5 
O3 1/3 1/2 1 2 3 4 5 4 
O4 1/4 1/3 1/2 1 2 3 4 3 
O5 1/5 1/4 1/3 1/2 1 2 3 2 
O6 1/6 1/5 1/4 1/3 1/2 1 2 1 
O7 1/7 1/6 1/5 1/4 1/3 1/2 1 0 

C.I.=0.033 
 
2.2 Test for a pairwise comparison matrix with a tie between different items 
For the sake of convenience, we describe when aij=1 ( ) in a pairwise comparison matrix 

A=(aij). Then for example the triad O1O2O3 with  and , or with  and 
 is clearly inconsistent. So we need to consider these kinds of triads in addition to circular 

triads contained in a pairwise comparison matrix. 
 
On the other hand we note that it is very hard to define the probabilities of ,  and 

, respectively, when we take at random a value from the AHP’s scale. In fact if one uses the scale 

{1/k, k | , k is an integer}, the probability of or  is 8/17 and that of is 

1/17. If one uses the scale {1/k, k | , k is an odd number}, the probability of  or 

is 4/9 and that of is 1/9. Furthermore, we can also consider each probability of these 
three cases is equal to 1/3 because these appeared equally.  
 
For a tie between different items we can use the number from 1.1 to 1.9 for a more detailed judgment as 
in the group AHP (Saaty & Peniwati, 2007). However, there is for instance a possibility to which the 
judgment is mistaken when items may differ by amounts which fall below the threshold of 
distinguishability for the decision maker. 
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As one of solutions to these problems we propose that identity with  when , and when a 
pairwise comparison matrix contains ties between different items, we eliminate as many ties from A as 
possible before applying that test. This plan is natural because our purpose is to know whether items are 
ranked linearly or not. We note that in the case where there are a lot of ties in a pairwise comparison 
matrix, it is hard to apply this test by this way, though there are mostly only a few ties in practice even if 
there are. 
 
At first we explain the procedure (Step 0) with (e1) and (e2) to eliminate a tie from A. We suppose that A 
has s ties ( ). Now when  (i < j), we eliminate this tie as follows; 

(e1) When aik > 1 and ajk > 1, or aik < 1 and ajk < 1 for all k except for integers k such that , we 
identify Oj with Oi in the sense of ranking problem and eliminate j-th row and j-th column out of A.  

(e2) When there is an integer k such that aik > 1 and ajk < 1, or aik < 1 and ajk > 1, the decision maker 
reevaluates aij, aik and ajk in A. As result one of the following holds; 
(1) The decision maker changes the value of aij to a value except for 1. As a result, the tie is eliminated 

from A. 
(2) The decision maker changes the values of aik or ajk to satisfy aik > 1 (< 1) and ajk > 1 (< 1) for all k 

except for integers k such that . In this case we apply (e1) to this new matrix. 
(3) Otherwise, i.e., aik > 1 (< 1) and ajk < 1 (> 1) for some integer k, we consider the two items Oi and Oj 

as the almost same items as each other in the sense of ranking problem and eliminate the i-th row and the 
i-th column, or the  j-th row and the  j-th column from A by force (see Remark 3(1)).  
 
After repeating these arrangements (e1) and (e2) for s ties we will obtain a pairwise comparison matrix 
without a tie. Here we apply the procedure (Step 1)–(Step 3) in Section 2.1 to this new matrix without a 
tie between different items. Certainly if the type of the matrix is  or , we don't need that test at 
all, i.e., we can think that A is sufficiently consistent.  
 
Remark 3. (1) In Case (e2) if (3) holds and aik > 1 (< 1) and ajk < 1 (> 1), then we need to examine the 
both of the case of eliminating Oi, in which we consider aik = ajk < 1 (> 1), and the case of eliminating Oj, 
in which we consider aik = ajk > 1 (< 1). We may eliminate the item that passes that test. When there is no 
such item, we should suggest the decision maker to reconsider items on the upper level or not to use AHP 
at this point because the items aren’t clearly ranked linearly. From these views we note that a decision 
maker should be sufficiently careful to use a tie. 
(2) When there exists an item with two ties or more, which is for instance like an item O2 with O1 = O2 
=O3 and , we need to investigate these items simultaneously. Then notation of a pairwise 
comparison matrix proposed in the next section is helpful (see Example 4). 
 
Table 3. The pairwise comparison table for eight items 

 O1 O2 O3 O4 O5 O6 O7 O8 
O1 1 2 1/2 2 1/2 2 1/2 2 
O2 1/2 1 4 1 1/4 1 1/4 1 
O3 2 1/4 1 4 1 4 1 4 
O4 1/2 1 1/4 1 1/4 1 1/4 1 
O5 2 4 1 4 1 4 1 4 
O6 1/2 1 1/4 1 1/4 1 1/4 1 
O7 2 4 1 4 1 4 1 4 
O8 1/2 1 1/4 1 1/4 1 1/4 1 
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Example 2. We use Table 3 with C.I. = 0.07252 to explain the procedure (Step 0)–(Step 3). This table 
was introduced in (Kwiesielewicz, and Uden, 2002) as an example of a pairwise comparison matrix with 
acceptable C.I. but which is inconsistent because it contains many circular triads.  
 
Firstly, we eliminate ties from Table 3, which is denoted by A=(aij), by (e1) and (e2). Indeed the 
estimations in O5 and O7 completely accord to each other. The estimations in O4, O6 and O8 also 
completely accord to each other. So we construct a new pairwise comparison table for five items O1, O2, 
O3, O4 and O5 with a tie as follows; 
 
Table 4. The pairwise comparison table eliminated copies from Table 3 

 O1 O2 O3 O4 O5 

O1 1 2 1/2 2 1/2 
O2 1/2 1 4 1 1/4 
O3 2 1/4 1 4 1 
O4 1/2 1 1/4 1 1/4 
O5 2 4 1 4 1 

 
Because a24=a42=1, a21=a41<1 but a23>1 and a43<1 in Table 4, in (e2) we suggest the decision maker to 
reevaluate an importance between O2 and O3 or between O3 and O4. For example if he or she changes 
a23=4 to 1/4 (= a43), then we have the following table; 
 
Table 5.  The pairwise comparison table changed a23 to 1/4 in Table 4 

 O1 O2 O3 O4 O5 

O1 1 2 1/2 2 1/2 
O2 1/2 1 1/4 1 1/4 
O3 2 4 1 4 1 
O4 1/2 1 1/4 1 1/4 
O5 2 4 1 4 1 

 
Then we can identify O2 with O4 in Table 5 in the second times of (e1) and so we have Table 6 by 
removing O2 from Table 5. Because changing the value a23 of  O2, we take O2 off Table 5 to get Table 6. 
 
Table 6. The pairwise comparison table eliminated O2 from Table 5 

 O1 O3 O4 O5 

O1 1 1/2 2 1/2 
O3 2 1 4 1 
O4 1/2 1/4 1 1/4 
O5 2 1 4 1 

 
As a result, we can identify O3 with O5 in Table 6 and have the following Table 7 in the third times of 
(e1).  
 
Table 7. The pairwise comparison table eliminated completely ties from Table 3 

 O1 O3 O4 
O1 1 1/2 2 
O3 2 1 4 
O4 1/2 1/4 1 

 
Here we apply the test proposed in Section 2.1 to Table 7, which is called A=(aij) from now, in order to  
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explain (Step 1)–(Step 3), though it follows from Theorem 1 that there are no circular triads in Table 7. 
We decide a significant level = 0.1. In (Step 1) we have the following table about ai in Table 8. 
 
Table 8. The number of integers j such that  

a1 a2 a3 
1 2 0 

 
In (Step 2) we have d=0 from Table 8. In (Step 3) because d=0 d0.1,3=0 by Table 1, we can assume that 
these items are ranked linearly by the pairwise comparison matrix.  
 
On the other hand, it is easy to see that if the decision maker changes a43=1/4 to 4 (= a23) in Table 4, then 
Table 5 cannot pass this test. Consequently, we need to change a23=4 and a32=1/4 to 1/4 and 4 in Table 3, 
respectively, in order to pass this test. 
 
3. Notation of a pairwise comparison matrix 
In this section we propose notation of a pairwise comparison matrix in which relations among items can 
easily be observed, for instance rough-and-ready ordinality of items. It is useful to know the ranking of 
items simply by the number of wins and the number of defeats on the other hand of ranking by weights of 
AHP. In fact the former is fit for the decision maker’s intuition. We propose the standardization of two 
stages. Though this notation doesn’t have uniqueness, we show the utility of it by an example at the end 
of this section.  
 
Now we consider the relation between items and the pairwise comparison table for it. For example, we 
describe the pairwise comparison table A = (aij) for 5 items Oi ( ) as follows; 
 
Table 9. A pairwise comparison matrix A = (aij) for {O1, O2, O3, O4, O5} 

 O1 O2 O3 O4 O5 
O1 1 a12 a13 a14 a15 
O2 a21 1 a23 a24 a25 
O3 a31 a32 1 a34 a35 
O4 a41 a42 a43 1 a45 
O5 a51 a52 a53 a54 1 

 
Then the i-th row and the i-th column of A are corresponding to the item Oi. In general an ordinality of 
items corresponding to rows and columns of a pairwise comparison matrix is decided by a decision maker 
without a rule. So when representing pairwise comparisons with a table, we need to show items 
corresponding to rows and columns of the table, for example, the pairwise comparison table A for {O1, 
O2, O3, O4, O5}.  In general, the table for {O1, O4, O3, O2, O5} is different from one for {O1, O2, O3, O4, 
O5}. By the way, in order to obtain a pairwise comparison table for {O1, O4, O3, O2, O5} from one for 
{O1, O2, O3, O4, O5}, it is sufficient to exchange the 2-th column for the 4-th column after exchanging the 
2-th row for the 4-th row as follows. Table 11 is the pairwise comparison matrix for {O1, O4, O3, O2, O5}. 
 
Table 10. The table which is exchanged the 2-th row for the 4-th row in Table 9 

 O1 O2 O3 O4 O5 
O1 1 a12 a13 a14 a15 
O4 a41 a42 a43 1 a45 
O3 a31 a32 1 a34 a35 
O2 a21 1 a23 a24 a25 
O5 a51 a52 a53 a54 1 
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Table 11. The table which is exchanged the 2-th column for the 4-th column in Table 10 

 O1 O4 O3 O2 O5 
O1 1 a14 a13 a12 a15 
O4 a41 1 a43 a42 a45 
O3 a31 a34 1 a32 a35 
O2 a21 a24 a23 1 a25 
O5 a51 a54 a53 a52 1 

 
Here we rewrite this method in a matrix. We denote by E(i, j) the matrix which is exchanged the i-row for 
the j-row in the identity matrix. For example, in order to exchange the 2-th row for the 4-th row in a 
pairwise comparison matrix A for 5 items we use the following matrix; 

. 

 
Then it is easy to see that multiplying E(2,4) from the right (left) side by a matrix we have the matrix that 
the 2-th row (column) and the 4-th row (column) of the matrix are exchanged. Consequently, we have 

. 

 
In general, we obtain the pairwise comparison matrix B for {Ok(1), Ok(2), Ok(3), Ok(4), Ok(5)} from the 
pairwise comparison matrix A for {O1, O2, O3, O4, O5} as follows. We have the following permutation 

in the symmetric group S5 for 5 letters; 

. 

From elementary algebra it follows that there exist transpositions (i1, j1), (i2, j2), …, and (it, jt) for some t 
such that  = (i1, j1) (i2, j2) …(it, jt) . Then B = E(it, jt)…E(i2, j2)E(i1, j1) A E(i1, j1)E(i2, j2) …E(it, jt). 
 
On the other hand the following is well-known. 
 
Lemma 1. Let A and B be square n n matrices. If there exists a non-singular n n matrix C such that 
B=C-1AC, the followings hold. 
(1) Eigenvalues of A are equivalent to eigenvalues of B. 
(2) If x is an eigenvector of A belonging to the eigenvalue of A, then C-1x is an eigenvector of B 
belonging to the eigenvalue  of B. On the other hand, if y is an eigenvector of B belonging to the 
eigenvalue of B, then Cy is an eigenvector of A belonging to the eigenvalue  of A. 
 
From the above argument and Lemma 1 we have the following, which is a base of the eigenvalue method 
in AHP. 
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Theorem 2. Weights of items, which were compared pairwisely, calculated by the eigenvalue method in 
AHP are independent upon how to make a pairwise comparison matrix for these items. 
 
Proof. It is easily proved from Lemma 1 since E(i, j)-1 = E(i, j). 
 
Now we define the standardization of two stages for a pairwise comparison matrix A = (aij). 
 
(First Standardization) Arrange items from the first row in lexicographic order of values of wi = #{aij | 
aij > 1} and ti = #{aij | aij = 1 } ( ) in A = (aij), where we denote by #S the cardinal number of a set 
S. Consequently, we have a first standardized matrix . 
(Second Standardization) Moreover, we standardize a first standardized matrix . If there exist 
items having the same values wi and ti in , arrange those items from the upper row in descending 

order of . Consequently, we have a second standardized matrix . 
 
We note that weights of items by the eigenvalue method are invariant by the above two standardizations. 
From Second standardization we know whether or not there exists a k-cycle ( ) in the pairwise 
comparison matrix, and if the k-cycle exists in complete form, i.e., all items in k-cycle have the same 
relations with any items in except for themselves or not, and so on. These standardizations are useful 
when analyzing a single pairwise comparison matrix, though when analyzing or comparing more than one 
pairwise comparison matrices for alternatives under several criteria, these are not necessarily useful for a 
decision maker. 
 
We show how to standardize a pairwise comparison matrix by an example. 
 
Example 3.  We suppose that a decision maker pairwisely compared 6 items, which are denoted by A, B, 
C, D, E and F and made the following pairwise comparison table P = (pij);  
 
Table 12. The pairwise comparison table P for { A, B, C, D, E, F} 

 A B C D E F 
A 1 5 4 7 1 2 
B 1/5 1 1 1/2 2 1/2 
C 1/4 1 1 2 1/2 2 
D 1/7 2 1/2 1 1/4 1/4 
E 1 1/2 2 4 1 1 
F 1/2 2 1/2 4 1 1 

 
We firstly calculate wi ( ) which is the cardinal number of { pij | pij > 1} and ti ( ) which is 
the cardinal number of { pij | pij = 1}, and exchange the items from the first row in lexicographic order of 
values of wi and ti  ( ). 
 
Table 13.  The table which is applied First Standardization in Table 12 

 A E C F B D wi ti 
A 1 1 4 2 5 7 4 2 
E 1 1 2 1 1/2 4 2 3 
C 1/4 1/2 1 2 1 2 2 2 
F 1/2 1 1/2 1 2 4 2 2 
B 1/5 2 1 1/2 1 1/2 1 2 
D 1/7 1/4 1/2 1/4 2 1 1 1 
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Here we notice that items C and F in Table 13  have the same wi and ti. So we calculate for 

C and F, respectively, and arrange these two items from the upper row in descending order of . 
 
Table 14. The table which is applied Second Standardization in Table 13 

 A E F C B D gi 
A 1 1 2 4 5 7  
E 1 1 1 2 1/2 4  
F 1/2 1 1 1/2 2 4 2 
C 1/4 1/2 2 1 1 2 1/2 
B 1/5 2 1/2 1 1 1/2  
D 1/7 1/4 1/4 1/2 2 1  

 
Finally we change the names of items A, E, F, C, B and D to O1, O2, O3, O4, O5 and O6, respectively and 
obtain the following table which is applied Second Standardization. 
 
Table 15. The pairwise comparison matrix with Second Standardization for {O1, O2, O3, O4, O5, O6} 

 O1 O2 O3 O4 O5 O6 
O1 1 1 2 4 5 7 
O2 1 1 1 2 1/2 4 
O3 1/2 1 1 1/2 2 4 
O4 1/4 1/2 2 1 1 2 
O5 1/5 2 1/2 1 1 1/2 
O6 1/7 1/4 1/4 1/2 2 1 

 
Here we note that the both Standardization are independent on each other. Indeed there is an example in 
which O1 is arranged above O2 by First Standardization even though g1<g2 as follows; 
 
Table 16. A standardized table with g1<g2 

 O1 O2 O3 wi ti gi 
O1 1 2 2 2 1 4 
O2 1/2 1 9 1 1 9/2 = 4.5 
O3 1/2 1/9 1 0 1 1/18 

 
In the next table, we cannot uniquely arrange items O1, O2 and O3 by these two standardizations and 3-
cycle of these items isn’t complete. 
 
Table 17. A table which doesn’t have the unique form by two Standardizations 

 O1 O2 O3 O4 O5 wi ti gi 
O1 1 3 1/3 5 4 3 1 20 
O2 1/3 1 3 5 4 3 1 20 
O3 3 1/3 1 4 5 3 1 20 
O4 1/5 1/5 1/4 1 2 1 1  
O5 1/4 1/4 1/5 1/2 1 0 1  

 
Finally, we show that these standardizations are useful for decision makers by an example. In addition, 
we apply the consistency test introduced in Section 2 to this example again (see Example 2). 
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Example 4. We deal with the pairwise comparison matrix (table) A by Kwiesielewicz and Uden in 
Example 2.  

，  

 
Then we have the matrix B by First and Second Standardizations. It is very easy to see that there are about 
three kinds of items in B, i.e., A, in the sense of ranking problem. When setting items corresponding to B 
= (bij) O1, O2, …, and O8 from the first row of B, it easily follows that b35 and b53 have problems. So we 
can advise a decision maker to recheck the comparison for O3 and O5. 
 
Here we apply our test for ordinality of items according to (Step 0)–(Step 3) in Section 2. For simplicity 
we use the matrix B instead of the original matrix A for this test. From procedure (e1) we have the 
following matrix C0 = (cij) by identifying O2 with O1, and doing O7 and O8 with O6. We note that items in 
C0 are O1, O3, O4, O5 and O6 from the top of rows.  

 

 
In procedure (e2) because of c12=c21=1, we make an effort to identify O3 with O1 in the sense of ranking 
problem. If, for example, we set  c24=4, then we can identify O3 with O1, and O6 with O5 by the second 
procedure (e1) and have the following matrix C1. It follows from Theorem 1 that C1 have no circular triad 
and so we know that the pairwise comparison matrix B, i.e., A, passes the test and items in A are ranked 
linearly by A. On the other hand, if we set c14=1/4, then we have the following matrix C2 in the same 
procedure. It is easy to see that C2 has a circular triad and so the matrix B, i.e., A, doesn’t pass the test by 
Table 1 because we have d=1 in (Step 2).  

,  

 
Consequently, we need to ask the decision maker if the element c24 in C0, which a32 is in A, might be 
changed 4 or at least an integer more than 1. This result is the same as one in Example 2. 
 
4. Conclusions 
 The purpose of AHP is to rank some items linearly. So it is useful for a decision maker to know whether 
items which are compared pairwisely could be ranked linearly by the pairwise comparison matrix and we 
proposed two methods in this paper. One is an ordinary consistency test introduced in Section 2 and 
another is notation defined in Section 3. We showed in Example 4 that there is some relation between 
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these methods. We think that these two methods make AHP more useful and helpful, in particular for 
beginners who aren’t familiar with AHP. 
 
Finally, we couldn’t clarify the detailed relation between ranking by the numbers of wins and defeats and 
ranking by the eigenvalue method in AHP. After calculating weights of items by the eigenvalue method, 
it is useful for a decision maker to compare these two rankings and if they are different, then we might 
need to check some elements in the pairwise comparison matrix. These are topics for further research. 
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