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Abstract: The multiplicative variant of the analytic hierarchy process (MAI1P) 
employs a method of pairwise comparative judgements by a decision maker to arrive 
at final impact scores for the alternatives under consideration. This paper examines 
the effect of imprecision or uncertainty in the decision maker's judgements by 
expressing each judgement as a probability distribution, and the structure of the 
MAIM is exploited to derive interval judgements of the alternatives' final impact 
scores. These interval judgements can be 1.1ed to determine the probability of rank 
reversal amongst alternatives, i.e. to assess' the stability of the final impact score 
vector. 

Introduction 

The multiplicative variant of the analytic hierarchy process (hereinafter referred to as the MAHP) is a 
multicriteria decision making tool which utilises the concept of painvise comparisons within a structured 
hierarchy to arrive at a scoring and rank ordering of the alternatives under consideration (Barzilai et al, 
1987; Barzilai and Golani, 1991; Barzilai, 1992; Loorna, 1988, 1993). The decision maker (hereinafter 
referred to as the DM) provides a subjective cardinal judgement about the intensity of his preference 
for each alternative over each other alternative under each of a number of criteria or properties. This 
cardinal judgement is assumed to be a single categorical descriptive judgement taken from a set of such 
categorical descriptive judgements (and later during the analysis converted on to a numerical scale), 
implying that the DM can precisely express his preferences. 

Often, however, a DM might be uncertain about his preference intensity. When the preference 
judgements contain elements of uncertainty the final impact scores of the alternatives will also be 
uncertain, and can best be represented by an impact score interval (rather than a single point). These 
impact score intervals might exhibit some degree of Overlap, introducing some uncertainty as to the true 
rank ordering of the alternatives. The family of probabilities of rank reversal in the system offers an 
indication of the stability of the rank ordering of the alternatives: 

Uncertainty on the part of the DM about his preferences in the context of the original (eigenvector-
based) AHP was initially studied through a simulation approach (Saaty and Vargas, 1987). A uniformly-
distributed variate for each range of the decision maker's preference judgements was generated and used 
to compute the principal right eigenvector of the pairwise comparison matrices. Repeating this process 
a large number of times allowed the distribution of the components of the eigenvector to be empirically 
derived. Thereafter interval estimates for each component were set up, which were used to calculate the 
probabilities of reversal of ranks within the system of components. Saaty and Vargas' method, whilst 
tractable, appears cumbersome and impractical: there is a requirement to perform a full-scale simulation 
each time uncertainty arises in a discrete multicriteria decision problem. Furthermore criticism has been 
levelled at Saaty and Vargas' approach on several} counts (Stain and Silva, 1994). For instance (i) the 
method used to construct their impact score intervals is questioned (it is dependent on the level of 
confidence used), and (ii) the impact score interval for each component of the right principal 
eigenvector is computed independently of that for each other component, ignoring the possibility of 
correlation between components, which Stem and Silva show may not be insignificant. S tam and Silva 
propose two further estimators of the probability of rank reversal, and implement them using a 
simulation approach. They furthermore offer a rigorous statistical analysis of the rank reversal 
likelihoods in any system. 

Freerk Lootsma and Hans Schuijt of the Delft University of Technology offered helpful comments 
during the preparation of this paper. 
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Other research to incorporate uncertainty of pairwise judgements in the AHP were restricted to finite 
interval judgements (Arbel, 1989; Arbel and Vargas, 1993; 7.ahir, 1991; Salo and Hanthlliinen, 1992). 
Arbel and Vargas propose an optimisation approach, in which the collection of the DM's algebraic 
preference statements results in a set of linear inequalities, constituting the constraints of a linear 
programming (LP) problem. Examination of the LP solution provides an indication of the robustness 
of the rank ordering of the alternatives to the uncertainty in the DM's preference judgements. Arbel and 
Vargas refer to their method as preference programming. Zahir also assumed uniform interval 
judgements by the DM; his approach was analytical and approximate to the first order for small 
dimension pairwise comparison matrices 3 alternatives), and numeric (but exact and computationally 
more complex) for larger dimensional problems. Zahir does not provide any statistical analysis of the 
rank reversal problem. Salo and Hamafflinen use preference programming to modify and fine-tune the 
DM's initially-specified interval judgements in an attempt to minimise inconsistency and ambiguity on 
the part of the DM, thus attempting to reduce the length of the judgement intervals, and hence increase 
the stability of the rank ordering. An extension of the AHP using fuzzy logic to aid decision making 
under vagueness or imprecision has also been proposed (Boender a at, 1989; Buckley, 1985; Van 
I  aarhoven and Pedrycz, 1983). 

In this paper we will restrict ourselves to the study of uncertainty in the context of the multiplicative 
variant of the AHP (or MAHP). We will exploit the mathematical structure of the method to determine 
the theoretical distribution of the alternatives' impact scores when uncertainty is present in the 
preference judgements amongst the alternatives. Thus interval judgements can be set up for the impact 
scores, and the probability that alternatives may reverse ranks can be calculated under the given 
conditions of uncertainty. This method requires only mild distributional assumptions about the 
uncertainty in the subjective judgements. 

In the next section we describe different sources of uncertainty that may arise in a decision making 
context. Then follows a brief overview of the MAIIP, followed by a derivation of the theoretical 
distribution of the impact scores when uncertainty is present in the preference judgements amongst 
alternatives. This is followed by a brief discussion of two methods from the literature which measure 
the stability of the impact scores under uncertainty, and which can be adapted for our purposes. 

Sources of Uncertainty in the Decision Making Context 

In the decision making context, uncertainty could be categorised into one of three distinct classes: 

(1) Imprecision or Vagueness The linguistic qualifications describing each category of preference 
intensity are rather vague or imprecise, so that the DM has difficulty deciding which category best 
describes his feelings about a comparison. In hie. mind several of the linguistic qualifications or 
categories might be more or less appropriate, some more so than others. For example, the DM might 
know that he prefers Alternative A over Alternative B, but the categories "definite preference" and 
"strong preference" both seem more or less acceptable descriptions to him. 

(2) Inconsistency The categories of preference intensity offered to the DM are distinct (i.e. with crisp, 
non-overlapping endpoints), and are well understood by the DM. However if the DM is asked to 
provide a number of replications of a specific pairwise comparison under different environmental 
conditions, his responses are not unique; the range of conditions and his recent experiences create an 
inability for him to clas.sify his preference intensity into the same single category each time. For 
example, a DM is asked to offer his preference for the beverages orange juice and coffee. If the session 
takes place after, say, a convivial dinner, coffee might be preferred. On the other hand if the DM has 
just partaken in some strenuous exercise on a hot day, orange juice is likely to be preferred. 

(3) Stochastic Judgement The level of preference intensity depends on some event whose outcome 
is not known with certainty at the time of the decision. The stochastic nature thus reflects either 
subjective probabilities that a particular alternative better achieves a given goal, or objective 
probabilities that reflect uncertain consequences of selecting a particular alternative. For example, a DM 
is asked to choose one of two investment alternatives that require an identical one-time investment at 
the beginning of the planning period_ The choice might depend on the interest rate ruling over the 
investment period, which is likely to be unknown at the time of the investment decision. 

Although each of the above classes signifies a different form of indecision we will loosely label the 
above clacces under the general heading of "uncertainty". In each case, however, the DM might be 
reluctant to supply a single value or category to represent the intensity of his preference; the DM's 
uncertainty can best be described by a range of preference judgement values which defmes the domain 
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of some probability distribution on the pairwise judgements. This justifies a probabilistic approach 
which allows the use of standard statistical methodologies to study the effect of uncertainty on the final 
rank ordering of the alternatives. 

. The MAHP under Certamty: a Brief Overview 

In the basic experiment under certainty, two stimuli Si and Sk (two alternatives Ai and Ak under a 
particular criterion) are presented to the DM who is requested to express his graded comparative 
judgement about the pair. That is, he is asked to expregs his indifference between the two, or his weak, 
definite, strong or very strong preference for one of them over the other. We assume that stimuli have 
unknown subjective values Vi and Vic, and the purpose pf the experiment is to approximate these values 
by the calculated impact scores. The DM's pairwise comparative judgement of Si vis-a-vis Sk is 
captured on a category scale to restrict the range of possible verbal responses, and is characterised by 
an integer-valued index ; I  designating the gradations of the DM's judgement according to the scale 
below. 

Comparative judgement 

Very strong preference for Sk over Si
Strong preference for Sk over Si
Definite preference for Sk over Si
Weak preference for Sk over Si
Indifference between Si and Sk
Weak preference for Si over Sk
Definite preference for Si over Sk
Strong preference for Si over Sk
Very strong preference for Si over Sk

Gradation index 5 

-8 
-6 
-4 
-2 
0 

+2 
+4 
+6 
+8 

Intermediate integer values can be assigned to in order to express a hesitation between two adjacent 
gradations. We will assume that the resulting matrix A=taik) is skew-symmetric, i.e k i=-Sik. Thus in 
an experiment to choose amongst n alternatives, a total of only n(n-1)/2 pairwise judgements are 
required to fully determine A. In the MAIM the DM's judgement about the pair Si and Sk is used to 
estimate the preference ratio VP/k. The comparative judgements are converted into values on a 
geometric scale, characterised by scale parameter y. Thus we define 

rik = exP(4 
to be the numeric estimate of the preference ratio Vi/Vk given by the DM. Although there is no unique 
scale of human judgement, a plausible value of y islIn 2, implying a geometric scale with progression 
factor 2 (Lootsma, 1993). 

Suppose that there are n decision alternatives under consideration. We can estimate the vector V of 
subjective stimulus values via logarithmic least squares regression (Lootsmn 1993). We thus 
approximate V by the vector v which minimises 

E (1nrjk — ln vji + ln vk ) 2 (1) 
j<lc 

Substituting gik = In rik = yaik and wj = In vj in (1), the function to be minimised is 

E (calk Wi wk )12
3<k 

as a function of the wi, j=1„n. The associated set of normal equations can be written as 

(2) 
k=1 k=1 

i* In principal, by solving (2) we obtain a solution wt with an additive degree of freedom. Thereafter we 
calculate the vector v with components vi = exp(wi*), and use the multiplicative degree of freedom 
in vs to find a normalised solution v. Note that the rank ordering of the components of v does not 
depend on the scale parameter y (Lootsma, 1988; 1993). However there is no unique solution to the 
system in (2); by setting wk=0 we obtain a particular solution. An unnormalised solution to the 
logarithmic least squares problem in (1) can thenlbe explicitly written as 
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n 
1 
Ti V- = exp (NO = ex 1p y E ajk ll rjk I I k=1 J k=1 

i.e. the alternatives' impact scores vi are found by the calculation of a geometric mean of the rik over 
all k=1 ..... n. The vi can, if desired, be normalised in the sense that Evi=1. In what follows, however, 
we will work with the raw (unnormalised) impact scores. 

Often the choice of decision alternative has to be taken in the face of multiple conflicting criteria. Under 
conditions of certainty the alternatives Ai, j=1,...,n are compared pairwise with respect to each criterion 
Ci, i=1 .....m. Let iiik represent the numerical value on a geometric scale assigned to the DM's verbal 
estimate of Vo/Vik, the ratio of the subjective values of the alternatives under consideration under 
criterion Ci. Then rijk= exp(Aik), where S is the integer-valued index designating the DM's 
judgement. The impact scores v1 of the alternatives Aj, j=1 ...... under criterion q, i=1,...,m are merely 
the geometric means of the rows of the pairwise comparison matrix under q. Final scores for the 
alternatives in the MAHP follow from the geometric mean aggregation rule: an unnonnalised final score 
s for alternative A- is computed as 

Si = vi;
1=1 k=1 

m n 
gi ji H Pijk 

1=1 k=1 
(3) 

where pij k = exp (71; 6i  jk) , and gi is the normalised weight assigned to criterion Ci. Sometimes 
the criterion weights are determined by a pairwise comparison analysis amongst the criteria, analogous 
to that amongst alternatives under a single criterion. In this case the tmnormalised criterion weights are 
calculated as the geometric means of the row entries in the pairwise comparison matrix of criterion 
preferences. 

Uncertain Painvise Comparative Judgements in the MARI' 

The Distribution of the Components of the Impact Score Vector 

Assume now that an individual DM is unable to precisely identifg a single value of Siik due to some 
form of uncertainty in his jtidgezdent. Under these circumstances it is likely that the DM may prefer to 
specify a range or interval of values for 8 . We will assume that the DM's propensity for choosing 
a value within this range can be modelled by some probability distribution. Thus ; lc is a random 
variable, which in turn implies that rijk = ekp(ySiik) is also a random variable. 'Since 

pkjk = ex(X auk) , 

the impact scores si in (3) are the product of a sequence of random variables. Alternatively we can 
write 

m n m n 

EL ginp 11k In EE gi aijk 
1=1 k=1 • 1=1 k=1 

We will assume that the criterion weights gi are known or have been set a priori by the decision maker 
or "problem owner", i.e. there is no uncertainty in the prioritization of the criteria This assumption is 
appropriate in a wide range of applications. Under this premise the gi can be considered constant. Then 
by a generalisation of the central limit theorem (Feller, 1971), In si is approximately normally 
distributed. The normal approximation improves as n and in get large and as the distribution of Silk
tends towards normality. The distribution of the vector of overall impact scores si. is asymptotically 
multivariate lognormal under these assumptions. In most practical applications we can expect m and 
n to be fairly small (both m,n10, say), but the product mn might be fairly large, implying a good 
approximation of normality. Thus normality of ln si will not depend too severely on the distribution of 
the aijk• 

Let us assume now that the distribution of Sul( has mean //kik and variance cresik. Then the 
following results will be approximately true for any symmetrical distribution for S . Under these 

M 
circumstances in s i =IS 5g i 8 k will have mean 

n i=1 k=1 
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m n 

P lnsi = E E gimiJk 
1=1 k=1 

and variance 

2 =(. ) E E gi2 as2„ kk n  
m n

1=1 k=1 

m n n + 2 S E E 2 
g i Crain , 81in 1=1 k=1p=V+1 

where 08 8 is the covariance measured between any pair of elements in the pairwise comparison in• in) I 
matrix under criterion C. The variance term takes into consideration dependencies within the DM's 
preference selections themselves. These results can be Used to construct a set of interval judgements for 
the vector of overall impact scores. Thus I 

1 
1 

Si E exp [ pi a  si  ± Za n . ilia l ,,I sj , j=1,2,...,n 

with 100(1-a)% certainty. Whilst interval judgements of the si are of interest in their own right, we seek 
to compute the probabilities of reversal of rankings amongst the alternatives, which in turn will provide 
information as to the stability of the impact score vector. This will be based on the degree of overlap 
within the family of interval judgements for the sp following two approaches found in the literature 
(Saaty and Vargas, 1987; Stam and Silva, 1994), details of which follow in the next section. To this 
end we can more simply work with the symmetrical interval judgements of In si to examine the stability 
of the impact scores under uncertainty. 

Practical Considerations 

In practice the mean and variance of the distributions of each of the aijk might be easily elicited by 
asking the DM to furnish the maximum and mininunti 8iik value that he would be likely to consider. 
The range R = max(8ijk) - min(Siik) might be taken tolrepresent a95% coverage of the true range. Then 
assuming that the distribution of 84-k is symmetric, 1 psiik may be estimated by the midpoint of R, 
and asiik by R/4. Even if the distribution of S is not symmetric, Chebyshev's Inequality ensures 
that eau, is at worst R/9. • 

Covariance information is much more difficult to elicit Whilst it is tempting to make the simplifying 
assumption of perfect independence amongst the 6j this is likely to have the effect of underestimating 
the variance in the In s We thus propose the following practical procedure. Consider the entire 
alternative set under consideration, {A}, and fix all Wile alternatives except one, say ap. Offer the DM 
a range of variants for alternative ap (call it apo), r=1,2,..$), ai?:1 let the DM supply full comparative 
judgement information for the set of alternatives {A}-ap+apo, r=1,2,...,s under all criteria q, i=1,2,...,m. 
The resulting response matrices will indicate tow the DM's preference selections are correlated, and 
will allow approximate covariances to be calculated. 

Stability of the Vector of Unnormalised Impact Scores under Uncertainty 
F 

At least two fundamentally different estimators of the probability of rank reversal of the components 
of the impact score vector exist, and can easily be adapted for our purposes. 

Saaty and Vargas' model (Saaty and Vargas, 1987)advances the construction of a (1-a) level "interval 
of variation" for the logarithm of the ith component of the impact score vector (IVia), choosing a 
sufficiently small. If the intersection of Wiz' and I IVia (id) is defmed as IVir, then determine the 
estimate Pii of the probability of rank reversal 114 associated with each pair of alternatives i and j by 

P- = 

1 0 
P ( ln s j E Witt ) 

P ( In Si E 
P (In s i ,in s i E Witit ) 

if Ivi1=ø 
if ivff c IV; 
if IV; c IV 
if iV * 0 ; IV; * 

Thus if IV" and INT do not overlap then i and j will never reverse ranks, and if they do then ; is the 
probability that In si and ln sj are in the intersection IV". 

However IVia depends on the probability level a Of a is made smaller, IVii“ automatically becomes 
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larger), and P. implicitly assumes that the components of the impact score vector are statistically 
independent of one another, which is clearly not the case since the pall-wise comparison matrices are 
known to be skew-symmetric (Stain and Silva, 1994). The extent of dependence will be based on the 
specific data at hand. Saaty and Vargas' method does, however, allow consideration of the correlations 
within the DMs' preference responses. 

An alternative model by Siam and Silva (Siam and Silva, 1994) is based on the assumption that rank 
reversal between two alternatives i and j occurs if alternative i would be preferred over j under perfect 
information, but is calculated to be less preferred based on the sample information on the interval 
judgements. Then an estimator EV of flu is found by examining the magnitude of the difference 
between the logarithms of the ith and jth component of the impact score vector, Dii = In s - In si. Since 
the vector of logarithms of the impact scores has been shown to be multivariate normally distributed, 
D.. is also normal with mean 

Pp" = Plns i Pinsi
and variance 

2 2 
CrDii = °l2 as t ' alns i 2 aln s i ,lns i

where a In s i, In si is the covariance of the logarithms of the components of the impact score vector. 
This model thus includes the structural correlations between the components of the impact score vector 
arising from the skew-symmetry of the painvise comparison matrices. The estimate of Pi; is given by 

P5.11 = 2 P(Dij >0) (1 -P(Dii >0)) 

The probability P(D1i>0) can be estimated using Djj and , the maximum likelihood estimators 
of //Du and crLi respectively. By this definition Pt( ranges.from 0, when one alternative is always 
preferred to the other, to 0.5, when each alternative is equally likely to be preferred. Whilst Siam and 
Silva's estimator implicitly includes both sources of correlation in its estimate of rank reversal 
probability, it may prove virtually impossible in practice to accurately determine the covariance of the 
logarithms of the components of the impaCt score vector for a DM. 

The probability that alternative j will reverse rank with another alternative is then given by 

1 ,-1-1 - Pik) ,
• _ x*3 

and finally the probability of at-least one rank reveleal occurring in the system is given by 

P 1  - 
15)5K5n 

The quantity P is a measure of the overall stability of the vector of unnormalised impact scores under 
uncertainty. However the DM should examine not only P, but also Pi, j=1,...,n and Pik, j,k=1 ...... before 
reaching a conclusion as to whether or not the level of uncertainty in the system is too great to allow 
a reliable rank ordering of the alternatives for the purpose at hand. Often the objective of a multicritefia 
analysis is to identify and rank order just, a small number of the top-ranking altematifes (say i out of 
then, km). All that is important in this case is the probability of rank reversal amongst the top-ranking 
i alternatives (and possibly the next-ranking one or two): rank reversals amongst the other alternatives 
are irrelevant. 

Conclusions 

Uncertainty is encountered in a discrete multicriteria analysis when an individual decision maker is 
unable to clearly state a preference for one alternative over another. This uncertainty is best represented 
by an impact score interval (rather than a point estimate) for each alternative under consideration. We 
have exploited the structure of the MAHP to derive theoretical interval estimates of the geometric row 
means of the painvise comparison matrices and of the final impact scores, which allow the stability of 
the vector of unnormalised impact scores to be assessed under conditions of uncertainty occurring in 
the preference judgements amongst alternatives. This methodology is a generalisation of the 
multiplicative AI1P under certainty; indeed the MAHP under certainty is merely a special case when 
all uncertainties equal zero. 
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