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Abstract: The multiplicative variant of the analytic hierarchy process (MAHP)
employs a method of pairwise comparative judgements by a decision maker to arrive
at final impact scores for the altematives under consideration. This paper examines
the effect of imprecision or uncertainty in the decision maker’s judgements by
expressing each judgement as a probability distribution, and the structure of the
MAHP is exploited to derive interval judgéments of the alternatives’ final impact
scores. These interval judgements can be used to determine the probability of rank
reversal amongst alternatives, ie. to assess' the stability of the final impact score
vector.

Introduction

The multiplicative variant of the apalytic hierarchy process (hereinafter referred to as the MAHP) is a
multicriteria decision making tool which utilises the concept of pairwise comparisons within a structured
hierarchy to arrive at a scoring and rank ordering of Lhe alternatives under consideration (Barzilai et al,

1987; Barzilai and Golani, 1991; Barzilai, 1992; Lootsma, 1988, 1993). The decision maker (hereinafter
referred to as the DM) provides a subjective cardmal judgement about the intensity of his preference
for each alternative over each other alternative under each of a number of criteria or propesties. This
cardinal judgement is assumed to be a single categoncal descriptive judgement taken from a set of such
categorical descriptive judgements (and later during' the analysis converted on to a numerical scale),
implying that the DM can precisely express his preferences.

Often, however, a DM might be uncertain about his preference intensity. When the preference
judgements contain elements of uncertainty the fmal impact scores of the alternatives will also be
uncertain, and can best be represented by an zmpact score interval (rather than a single point). These
impact score intervals might exhibit some degree of overlap, introducing some uncertainty as to the true
rank ordenng of the alternatives. The family of probabﬂmes of rank reversal in the system offers an
indication of the stability of the rank ordering of tl}e alternatives.

Uncertainty on the part of the DM about his preferences in the context of the original (eigenvector-
based) AHP was initially studied through a simulation approach (Saaty and Vargas, 1987). A uniformly-
distributed variate for each range of the decision makcr s preference judgements was generated and used
to compute the principal right eigenvector of the pairwise comparison matrices. Repeating this process
a large number of times allowed the distribution of the components of the eigenvector to be empirically
derived. Thereafier interval estimates for each component were set up, which were used to calculate the
probabilities of reversal of ranks within the system of components. Saaty and Vargas® method, whilst
tractable, appears cumbersome and impractical: there is a requirement to perform a full-scale simulation
each time uncertainty arises in a discrete multicriteria decision problem. Furthermore criticism has been
levelled at Saaty and Vargas’ approach on severa]fcounts (Stam and Silva, 1994). For instance (i) the
method used to construct their impact score mtervals is questioned (it is dependent on the level of
confidence used), and (ii) the impact score mterval for each component of the right principal
eigenvector is computed independently of that for each other component, ignoring the possibility of
correlation between components, which Stam and Silva show may not be insignificant. Stam and Silva
propose two further estimators of the probability of rank reversal, and implement them using a
simulation approach. They furthermore offer a]rigorous statistical analysis of the rank reversal
likelihoods in any system.
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Other research to incorporate uncertainty of pairwise judgements in the AHP were restricted to finite
interval judgements (Arbel, 1989; Arbel and Vargas, 1993; Zahir, 1991; Salo and Himiildinen, 1992).
Arbel and Vargas propose an optimisation approach, in which the collection of the DM’s algebraic
preference statements results in a set of linear inequalities, constituting the constraints of a linear
programming (L.P) problem. Examination of the LP solution provides an indication of the robusmess
of the rank ordering of the alternatives to the uncertainty in the DM’s preference judgements. Arbel and
Vargas refer to their method as preference programming. Zahir also assumed uniform interval
judgements by the DM; his approach was analytical and approximate to the first order for small
dimension pairwise comparison matrices (< 3 alternatives), and numeric (but exact and computationally
more complex) for larger dimensional problems. Zahir does not provide any statistical analysis of the
rank reversal problem. Salo and Himildinen use preference programming to modify and fine-tune the
DM’s initially-specified interval judgements in an attempt to minimise inconsistency and ambiguity on
the part of the DM, thus attempting 1o reduce the length of the judgement intervals, and hence increase
the stability of the rank ordering. An extension of the AHP using fuzzy logic to aid decision making
under vagueness or imprecision has also been proposed (Boender et al, 1989; Buckley, 1985; Van
Laarhoven and Pedrycz, 1983).

In this paper we will restrict ourselves to the study of uncertainty in the context of the multiplicative
variant of the AHP (or MAHP). We will exploit the mathematical stracture of the method to determine
the theoretical distribution of the altemnatives’ impact scores when uncertainty is present in the
preference judgements amongst the alternatives. Thus interval judgements can be set up for the impact
scores, and the probability that alternatives may reverse ranks can be calculated under the given
conditions of uncertainty. This method requires only mild distributional assumptions about the
uncertainty in the subjective judgements.

In the next section we describe different sources of unceriainty that may arise in a decision making
context. Then follows a brief overview of the MAHP, followed by a derivation of the theoretical
distribution of the impact scores when uncertainty is present in the preference judgements amongst
altemnatives. This is followed by a brief discussion of two methods from the literature which measure
the stability of the impact scores under uncertainty, and which can be adapted for our puzposes.

Sources of Uncertainty in the Decision Making Context

In the decision making context, uncestainty could be categorised into one of three distinct classes:

(1) Imprecision or Vagueness The linguistic qualifications describing each category of preference
intensity are rather vague or imprecise, so that the DM has difficulty deciding which category best
describes his feelings about a comparison. In his mind several of the linguistic qualifications or
categories might be more or less appropriate, some more so than others. For example, the DM might
know that he prefers Alternative A over Alternative B, but the -categories "definite preference” and
"strong preference” both seem more or less acceptable descriptions to him.

(2) Inconsistency The categories of preference intensity offered to the DM are distinct (i.e. with crisp,
non-overlapping endpoints), and are well understood by the DM. However if the DM is asked to
provide 2 number of replications of a specific pairwise comparison under different environmental
conditions, his responses are not unique; the range of conditions and his recent experiences create-an
inability for him to classify his preference intensity into the same single category each time. For
example, 2 DM is asked to-offer his preference for the beverages orange juice and coffee. If the session
takes place after, say, a convivial diner, coffee might be preferred. On the other hand if the DM has
just partaken in some strenuous exercise on a hot day, orange juice is likely to be preferred.

(3) Stochastic Judgement The level of preference intensity depends on some event whose outcome
is not known with certainty at the time of the decision. The stochastic nature thus reflects either
subjective probabilities that a particular alternative better achieves a given goal, or objective
probabilities that reflect uncertain consequences of selecting a particular alternative. For example, a DM
is asked to choose one of two investment aliernatives that require an identical one-time investment at
the begmmng of the planning period. The choice might depend on the interest rate ruling over the
investment period, which is likely to be unknown at the time of the investment decision.

Although each of the above classes signifies a different form of indecision we will loosely label the

above classes under the general heading of "uncertainty”. In each case, however, the DM might be

reluctant to supply a single value or category to represent the intensity of his preference; the DM’s

uncertainty can best be described by a range of preference judgement values which defines the domain
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of some probability distribution on the pairwise Judgemems This justifies a probabilistic approach
which allows the use of standard statistical methodo!ogles to study the effect of uncertainty on the final
rank ordering of the alternatives. !

|
The MAHP under Certaintly: a Brief Overview

In the basic experiment under certainty, two stimuli S and §; (two alternatives A; and A, under a
particular criterion) are presented to the DM who 1s requested to express his graded comparative
judgement about the pair. That is, he is asked to express his indifference between the two, or his weak,
definite, strong or very strong preference for one of them over the other. We assume that stimuli have
unknown subjective values V; and V,, and the purpose ¢ of the experiment is to approximate these values
by the calculated impact scores. The DM’s pa1rw1se comparative judgement of §; vis-a-vis Sy is
captured on a category scale to restrict the range of possfole verbal responses, and is charactensed by

an integer-valued index Sﬁ( designating the gradauons of the DM’s judgement according to the scale
below.

Comparative judgement Gradation index 83!‘
Very strong preference for S, over §; -8
Strong preference for S, over 5; -6
Definite preference for S over §; -4
Weak preference for Sy over §; -2
Indifference between S; and Sk | 0
Weak preference for S; over S, | +2
Definite preference for S; over Sy ' +4
Strong preference for S; over Sk ! +6
Very strong preference for S; over Sy +8

Intermediate integer values can be assigned to 8'& in order to express a hesitation between two adjacent
gradations. We will assume that the resulting matmuA-[Sl} is skew-symmetric, i.e, 5,9--8],( Thus in
an experiment to choose amongst n alternatives, a total of only n(n-1)/2 pairwise judgements are
required to fully determine A. In the MAHP the DM’s judgement about the pair S; and Sy is used to
estimate the preference ratio V, IVk The compaxatlvc judgements are converted mto values on a
geometric scale, characterised by scale parameter Y.| Thus we define

Ty = exp(ydy
to be the numeric estimate of the preference ratio VJ/V k &iven by the DM. Although there is no unique

scale of human judgement, a plausible value of vy is/In 2, implying a geometric scale with progression

factor 2 (Lootsma, 1993). |‘ . N

Suppose that there are n decision alternatives under consideration. We can estimate the vector V of
subjective stimulus values via logarithmic least! squares regression (Lootsma, 1993). We thus
approximate V by the vector v which minimises

E (1nrjk-1nvjj]+ invy)? ¢V}
Jj<k -
Substituting Q= In 1 = Y3, and w; =In v; in (l?, the function to be minimised is

E (Qypc — w3 +wy )%2
= |
as a function of the w;, j=1,....,n. The associated set of normal equations can be written as
n n
y£85k=nwj-}i=zlwk . 3j=1,...,n (¢))

In principal, by solvmg (2) we obtain a soluuon wJ] with an additive degree of freedom. Thereafter we
calculate the vector v© with components v‘1 = exp(wJ ), and use the multiplicative degree of freedom
in v" to find a normalised solution v. Note that the rank ordering of the components of v does not
depend on the scale parameter ¥ (Lootsma, 1988I 1993). However there is no unigue solution to the
system in (2); by setting Zw,=0 we obtain a parucular solution. An unnormalised solution to the
logarithmic least squares problem in (1) can then(be explicitly written as
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v;=exp (W)= exp ['ﬁ Y k§-1: 5jk] = | [ =3¢

k=l

i.e. the alternatives’ impact scores v; are found by the calculation of a geometric mean of the r, over
all k=1,...,n. The v; can, if desired, be normalised in the sense that Zvj=1. In what follows, however,
we will work with the raw (unnormalised) impact scores.

Often the choice of decision alternative has to be taken in the face of multiple conflicting criteria. Under
conditions of certainty the alternatives A;, j=1,...,n are compared pairwise with respect to each criterion
C;, i=L,...m. Let 1y represent the numerical value on a geometric scale assigned to the DM's verbal
estimate of V; J/V,k, the ratio of the subjective values of the alternatives under consideration under
criterion C;. Then ry= exp(y8y), where &y is the integer-valued index designating the DM'’s
judgement. The Jmpact scores Vi of the altemanvcs AJ j=1,...n under criterion C,, i=1,...,m are merely
the geometric means of the rows of the pairwise comparison matrix under C,. Final scores for the
alternatives in the MAHP follow from the geometric mean aggregation rule: an unnonmalised final score
s; for alternative A; is computed as

m % & oa
szllvls ’H[Hruf] =11;II;_[ 131: 3

1= 1=1 L k=1

where pjjx = exp % 8;4x) » and g; is the normalised weight assigned to criterion C;. Sometimes
the criterion weights are determined by a pairwise comparison analysis amongst the criteria, analogous
to that amongst alternatives under a single criterion. In this case the unnormalised criterion weights are
calculated as the geometric means of the row entries in the pairwise comparison matrix of criterion
preferences.

Uncertain Pairwise Comparative Judgements in the MAHP
The Distribution of the Components of the Impact Score Vector

Assume now that an individual DM is unable to precisely identify a single value of S,Jk due to some
form of uncertainty in his Judgement Under these circumstances it is likely that the DM may prefer to
specify a range or interval of values for o k- We will assume that the DM’s propensity for choosing
a value within this range can be modelled by some probability distribution. Thus 3, i 1 @ random
variable, which in turn implies that 1y, = exp(yd, i) is also a random variable. ‘Since

Pk = exp(l 5ijk)
vt

the impact scores s ; in (3) are the product of a sequence of random variables. Alternatively we can

write
E E gllnpljk = '—E E g; 8 ijk

is1 k=1

We will assume that the criterion weights g; are known or have been set a priori by the decision maker
or "problem owner”, ie. there is no uncertainty in the prioritization of the criteria. This assumption is
appropriate in a wide range of applications. Under this premise the g; can be considered constant. Then
by a generalisation of the central limit theorem (Feller, 1971), In s; is approximately normally
distributed. The normal approximation improves as » and m get large and as the distribution of &,

tends towards normality. The distribution of the vector of overall impact scores 5 is asymptotxcalfy
multivariate lognormal under these assumptions. In most practical applications we can expect m and
n to be fairly small (both m,n<10, say), but the product mn might be fairly large, implying a good

approximation of normality. Thus normality of In 5 will not depend too severely on the distribution of
the 8

Let us assume now that the distribution of 8 has mean Mg, ,, and variance of ke Then the
following results will be approxxmately true for any symmemcal distribution for Sgk Under these

circumstances 1n s = E E g3 834 will have mean
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ylnsj = 'gl' E E 9i Hijx

1=1 k=1
and variance
2 n n n 2
Oins, = (—) g). 05 + 2 di 95,.,,8
9 E 1% 121 kz=;. Pkl 1%/ %i3p
where OBy iy By5p is the covariance measured between any pair of elements in the pairwise comparison

matrix under criterion C;. The variance term takes into consideration dependencies within the DM’s
preference selections themselves. These results can be used to construct a set of interval judgements for
the vector of overall impact scores. Thus |

84 € exp[ﬂlnsj % 202 - Voln'sj] j=1,2,...,n

with 100(1-0t)% certainty. Whilst interval judgements of the s; are of interest in their own right, we seek
to compute the probabilities of reversal of rankings amongst the alternatives, which in turn will provide
information as to the stability of the impact score vector. This will be based on the degree of overlap
within the family of interval judgements for the s, followmg two approaches found in the literature
(Saaty and Vargas, 1987; Stam and Silva, 1994), detalls of which follow in the next section. To this
end we can more simply work with the symmetrical interval judgements of In s; to examine the stability
of the impact scores under uncertainty. !

Practical Considerations

|
In practice the mean and variance of the dtstnbuuons of each of the &, might be easily elicited by
asking the DM to furnish the maximum and minimym 8y value that he would be likely to consider.
The range R = max($ i) - - min(®. i) might be taken tofrepresent 295% coverage of the true range. Then
assaming that the distribution of 8ﬂ: is symmetric, i' B,y may be estimated by the midpoint of R,
and o 3% by R/4. Even if the distribution of 8,}1: is not symmetric, Chebyshev’s Inequality ensures
that Oy 4 is at worst R/9. i

Covariance information is much more difficult to ehcnt. Whilst it is tempting 10 make the simplifying
assumption of perfect independence amongst the Suk,i this is likely to-have the effect of underestimating
the variance in the In s;. We thus propose the following practical procedure. Consider the entire
alternative set under con31derauon, {A}, and fix allithe alternatives except one, say a,. Offer the DM
a range of variants for alternative a, (call it .9, r=1,2,..:s), and let the DM ‘supply full comparative
judgement information for the set of alternatives {A}- ap+ap(‘) 1=1,2,...,s under all criteria C, i=1,2,...,m.
The resulting response matrices will indicate how the DM'’s preference selections are correlated, and
will allow approximate covariances to be calculatedl. o~

| 4
I
>

Stability of the Vector of Unn&rmalisjed Impact Scores under Uncertainty
|

At least two fundamentally different estimators of |xhe probability of rank reversal of the components
of the impact score vector exist, and can easily beadapted for our purposes.

Saaty and Vargas’ model (Saaty and Vargas, 1987)iadvances the construction of a (1-¢) level "interval
of variation” for the logarithm of the i™ component of the impact score vector (IV;%), choosing &
sufficiently small. If the intersection of IV,* andlIV“ (i#) is defined as IV * then determine the
estimate P of the probability of rank reversal H,J assocxated with each pair of altemauves iand j by

o if IVG =9
P = P(ln sy € IVy') if IV < IV
i~ P(ln s; € IVy) if IV ¢ IVS

P(lns;,lnsy €IVi]) | 1if IVi§ # @ ; IVS,IVS # IV

|

Thus if IV,* and IVJ do not overlap then i and j w1ll never reverse ranks, and if they do then Py is the
probablhty that In s; and In s; are in the mtersecuon IV, o,

However IV,* depends on the probability level a (xf ¢, is made smaller, IVij“ automaticaily becomes
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larger), and P;; implicitly assumes that the components of the impact score vector are statistically
independent ofJ one another, which is clearly not the case since the pairwise comparison matrices are
known to be skew-symmetric (Stam and Silva, 1994). The extent of dependence will be based on the
specific data at hand. Saaty and Vargas’ method does, however, allow consideration of the correlations
within the DMs’ preference responses.

An alternative model by Stam and Silva (Stam and Silva, 1994) is based on the assumption that rank
reversal between two alternatives i and j occurs if alternative i would be preferred over j under perfect
information, but is calculated to be less preferred based on the sample information on the interval
judgements. Then an esnmator P of IT; is found by examining the magnitude of the difference
between the logarithms of the i and i component of the impact score vector, D;; = In s; - In s;. Since
the vector of logarithms of the impact scores has been shown to be multivariate norma!ly distributed,
Dj; is also normal with mean

pDij = plnsi - pln53

and variance ) ) 5
Opyy = 9ins; * Ginsgy 2°lnsi.lnsj

where ©1n5,,1ns y is the covariance of the logarithms of the components of the impact score vector.

This model thus includes the structural correlations between the components of the impact score vecior
arising from the skew-symmetry of the pairwise comparison matrices. The estimate of P;” is given by

Pij =2 P(Dij>0) (l-P(Dij >0))

The probability P(Dij>0) can be estimated using SED!. ] and 51521 g the maximum likelihood estimators
of pp, , and ogi ; Tespectively. By this definition P,-j' ranges.from 0, when one alternative is always
preferred to the other, to 0.5, when each alternative is equally likely to be preferred. Whilst Stam and
Silva’s estimator implicitly includes both sources of corrclation in its estimate of rank reversal
probability, it may prove vu'tually mpossmle in practice to accuraiely determine the covariance of the
logarithms of the components of the impact score vector for a DM.

The probability that alternative j will reverse rank with another alternative is then given by .

="1 *--'H (I-Py) , 3=1, 2,-..., n

and ﬁnally the probabzhty of at least one iank reversal occurring in the system is given by
, =1- JI HA1-Ps)

4 . . 1sjSKsn «
The quantity P is.a measure of the overall stability of the vector of unnormalised impact scores under
uncertainty. However the DM should examine not only P, but also: Py, j=1,...,n and Py, jk=1,...,n before
reaching a conclusion as to whether or not the level of uncertamty in the system is too great to allow
areliable rank ordering of the alternatives for the purpose at hand. Often the objective of a multicriteria
analysis is to identify and rank order just:a small number of the top-ranking altematives (say i out of
the n, i<n). All that is important in this case is the probability of rank reversal amongst the top-ranking
i alternatives (and possibly the next-ranking. one or two): rank reversals amongst the othér alternatives
are irrelevant.

Conclusions

Uncertainty is encountered in a discrete mulficriteria -analysis when an individual decision maker is
unable to clearly state a preference for one alternative over another. This uncertainty is best represented
by an impact score interval (rather than a point estimate) for each alternative under consideration. We
have exploited the structure of the MAHP to derive theoretical interval estimates of the geometric row
means of the pairwise comparison matrices and of the final impact scofes, which allow the stability of
the vector of unnormalised impact scores to be assessed undér conditions of uncertainty occurring in
the preference judgements amongst alternatives. This methodology is a generalisation of the
multiplicative AHP under certainty; indeed the MAHP under certainty is merely a special case when
all uncertainties equal zero.
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