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Abstract: The geometric mean is the only acceptable solution to the problem of deriving 
weights from pairwise comparisons. Properties of acceptable solutions include immunity 
to rank reversals, independence of description of the problem, independence of scale 
inversion, uniqueness, independence of order of operations and inter-level consistency, 
preservation of the algebraic structure of the problem, extensibility to the additive case, 
related optimization models and related error measures. 

1 Introduction 
This paper is an overview of [2] where the issue of deriving priorities or weights in the Analytic 
Hierarchy Process (AHP) is analyzed. We refer the reader to that paper for proofs of theorems, 
numerical examples and detailed discussion. 

2 • Structure and Ncitation 

2.1 'Conventions 
Throughout this paper, all matrices are .n x vectors are n-dimensional and vector and matrix 
operations apply componentwiae. 

2.2 Definitions 
1. A = (ail) is a pan-wise multiplicative matrix if 0 < a5 = 

2. w = (wk) is a multiplicative weight vector if wk > 0 and rinkri i Ink = 1. 

3. A = (ad is a multiplicative consistent matrix if au = w1/w5 for some multiplicative weight 
vector w. 

4. Ax , wx and Cx are the sets of all pairwise multiplicative matrices, multiplicative weight 
vectors and multiplicative consistent matrices, respectively. 

5. f x is the set of all mappings front, Ax to wx 

6. A = (Cu) is a pairwise additive Matrix if a15 = —a51. 
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7. w = (tot) is an additive weight vector if En  Wk = 0-
8. A = (au) is an additive consistent matrix if aij = to1 — wi for some additive weight vector w. 

9. A+, w+ and C+ are the sets of all pairwise additive matrices, additive weight vectors and 
additive consistent matrices, respectively. 

10. f+ is the set of all mappings from A+ to w+. 

2.3 Structure 

1. Ax, wx and Cx are all groups under componentwise multiplication; Cx is isomorphic to wx , 
and is a subgroup of Ax. 

2. A+, w+ and C+ are all groups under componentwise addition; C+ is isomorphic to w+, and 
is a subgroup of At. 

3. Ax , wx and Cx are isomorphic to At, w+ and C+, respectively. (The logarithmic func-
tion with any fixed basis applied componentwise is an isomorphism and the corresponding 
exponential function is its inverse.) 

3 The Multiplicative Axioms 
A solution of our problem is a specific mapping f E r. The following axioms and theorem provide 
a characterization of the geometric mean mapping. 

Axiom 1 If A is a consistent multiplicative matrix with an underlying 
multiplicative weight vector to (i.e. ajj = wihai and li nk=1 Wk = 
1), then the solution is the vector to, that is, f(A)= to. 

Axiom 2 The weight wi attributed to alternative i is independent of rel-
ative measurements among alternatives other than i. 

Theorem 1 
There is exactly one mapping to = f(A) satisfying Axioms 1-2, namely, the geometric mean, given 
by 

WI = (11aii )1/n 
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4 Properties of the Geometric Mean 

4.1 Scale Inversion and Independence of Description 

Theorem 2 
For any A E AX, the geometric mean mapping satisfies 

f(11.4)=11f(A). 

If the matrix A describes the relative preferences of the decision maker on a ratio scale, then the 
matrix 1/A describes the same preferences on the inverse ratio scale obtained by replacing x on the 
original scale with 1/x on the inverse one. It is an elementary principle of the theory of measurement 
that for f E fx to be an admissible solution, it must be independent of scale relabelling of this 
type. Any mapping f E f x which does not satisfy the independence-of-scale-inversion condition 
1(1/A) = 111(A) has the unacceptable characteristic that it produces solutions which depend on 
the description of the problem. Since the eigenvector mapping does not satisfy this condition, it 
cannot satisfy any set of reasonable axioms for deriving weights from pairwise comparisons. 

Relabelling the ratio scale into the inverse ratio scale affects the coding of the input and the 
output, but it does not affect the preferences stated in either the input or the output of the problem. 
The process may be described by writing two computer programs which accept the decision maker's 
description of inconsistent pairwise preferences as input and produce a graph of the weights vector on 
a one-dimensional scale as output. From the point of view of the decision maker the two programs are 
identical since he provides a single set of input measurements and receives a single graph as output 
and is unaware that the two programs code the input and output differently. If these programs 
use the eigenvector method to compute weights, they will generate inconsistent outputs because the 
eigenvector method does not satisfy the independence-of-scale-inversion condition (see §6.3). 

Note that the decision maker is not required to measure his preferences on the ratio scale and its 
inverse scale simultaneously but rather to provide a single set of input measurements on a single scale, 
to be processed by two programs using the same algorithm. Therefore, the philosophical discussion 
on whether there is or there is not "a natural way for our mind to synthesize its dominance and 
anti-dominance or recessiveness measures to obtain unified interpretation of reality," and what is 
"an effective way for dealing with the two sides of human experience" (see [9, p. 192]), is not an 
acceptable justification for this inconsistency. Similarly, the eigenvector method's scale-inversion 
dependence cannot be justified as an issue of practice vs. theory (see the first paragraph of §3 in 
[10]). 

4.2 Symmetry and Uniqueness 

The transpose of a pairwise multiplicative matrix is its componentwise inverse: au = 1/a31 implies 
1/A = AT. This relationship led Johnson et al. [8] to interpret the violation of the independence-
of-scale-inversion condition as the right-left asymmetry of the eigenvector solution. This is also a 
manifestation of the non-uniqueness of the eigenvector method — if weights can be retrieved through 
either right or left eigenvectors (Saaty suggests their reciprocals as well in [10, p. 158]), which one 
should be preferred and on what basis? 
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In contrast, the geometric mean is symmetric, unique and scale-inversion independent of the 
description of the problem by Theorem 2. 

4.3 Independence of Order of Operations — Inter-Level Consistency 
and Uniqueness 

We demonstrated in [1,4] that the eigenvector method in conjunction with additive normalization of 
weight vectors and an additive aggregation rul e (the weighted arithmetic mean as used in the ATM) 
lead to different solutions depending on the order of operations. Since there is no intrinsic reason 
to prefer one order of operations over the other, this inter-level inconsistency results in multiple 
solutions — another facet of the non-uniqueness of the AHP procedures. In contrast, we proved in 
[4] that the solution obtained when weights aije derived by the geometric mean rule and levels in the 
hierarchy are combined by the weighted-geometric-mean aggregation rule is unique and independent 
of order of operations. 

4.4 Algebraic Structure 
As noted in §2.3, the underlying mathematical structures are algebraic (rather than analytic). Specif-
ically, we are dealing with groups related by isomorphisms. Not surprisingly in this context, the 
geometric mean is a homomorphism from Ax to wx 

4.5 Extensibility to the Additiye Case, Optimization Models and Error 
Measurement 

Consider the additive problem of deriving weights from additive pairwise comparison matrices. In 
the notation of §2, we seek a mapping f E 1+. All our results for the multiplicative case carry over to 
the additive case verbatim (see (3,I)). In particular, in complete analogy to the multiplicative case, 
we can state two additive axioms which are satisfied only by the arithmetic mean wi E71 /215 
which also satisfies the additive independence-of-scale-inversion condition f(—A) = —f(A). The 
isomorphisms of §2.3 link the arithmetic mean with the geometric mean: 

n 

111{(11 gaii) 11n} = E 
n 

5=1 3=1 

Furthermore, the arithmetic mean is the solution of the optimization problem 

n n 

(tvi - win 
1=15=1 

S.t.

1=1 
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naturally associated with the additive problem of specifying f E f+. Similarly, the geometric mean 
is the solution of the optimization problem 

11 it 

min E E (In a11 — ln(wi/wjn2
1=1 j=1 

S.t. = 1, 11/1 > 0, i = 1, n. 

The group structures provided within the framework of §2 justify the association between the two 
optimization problems by means of the logarithmic/exponential isomorphisms relating Ax and A+. 

The objective functions of the optimization problems provide measures of consistency in a natural 
way. In the additive case, this measure is given by a Jr_, 4, where au = au — — w5) are the 
error terms. In contrast, the eigenvector solution is not applicable to the additive problem. Elegant 
as it is, the spectral analysis of positive matrices is not relevant to our decision analysis problem. 

5 Rank Preservation vs. Rank Reversal 
5.1 m-step Estimates 

The following theorems explore the notion of comparing alternatives in chains rather than pairwise 
and demonstrate that an m-step estimate of the difference or ratio of the weights of the alternatives 
can be defined in a natural manner and that this definition is consistent with the arithmetic and 
geometric means in the additive and multiplicative cases respectively, as well as with the measure 
of error defined in §5.4. 

Theorem 3 
Let A E A+, in > 1, and wi = E kn=1 ask. Then 

071+0 1
1.7 

n ni  
E (au, + ak1k2 ± • • • + akm_i k, ak,j) = Wi — WI. 

k 0E2 km=1 

If A E A' , m > 1, and wi = atk)11°, then 
11 ta- •akik2 • ... • ak„t_ikm • a 5) 1"m

agn+ 1 ) 
= H = 

W ' 

5.2 Row Dominance Concepts 
We demonstrated in [2] that the claim (see e.g. Saaty and Vargas [11] and Saaty [10]) that the 
eigenvector solution "preserves rank" is not meaningful. "Strong rank preservation" as defined in 
[11] is in fact a weak condition. None of the results in [11] is a necessary and sufficient condition 
for "strong rank preservation." It is an error to attach this property to a certain type of matrices 
(rather than mappings of matrices) as in the corollary to Theorem 4 in [11] and Saaty and Vargas's 
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concept of asymptotically m-dominant matrices has no intrinsic value in the context of our problem. 
In the paragraph preceding Theorem 5 in [11], Saaty and Vargas state: 

"For emphasis, recall from graph theory that an element 4 .71) of Am gives the cumulative 
dominance of the ith element over the jth element along all chains of length in. That is 
precisely how one measures the consistency relation between that row and each column." 

There is no standard notion of "cumulative dominance" in graph theory as implied here (cf. e.g. 
Busacker and Saaty [7]), and measuring consistency in this particular manner is precisely and cir-
cularly equivalent to using the eigenvector method. Finally, the left eigenvector satisfies asymptotic 
conditions which are completely analogous to the ones atisfied by the right eigenvector. 

5.3 The Eigenvector "Rank Preservation" Examples 
In [11], Saaty and Vargas compare the eigenvector and geometric mean solutions and provide an 
example for which the geometric mean ranking disagrees with the ranking obtained by the (right) 
eigenvector which they assume to be correct. We demonstrate in [2] that in fact, Saaty and Vargas's 
example is a case of the eigenvector solution exhibiting a scale-inversion rank reversal. 

5.4 Belton and Gear's Rank Reversal 
We refer the reader to our detailed study in [4] of the well-known Belton and Gear's rank reversal 
phenomenon (see [6]). The main result is that the geometric mean is immune to this type of rank 
reversal when used in conjunction with the weighted-geometric-mean aggregation rule while the 
AHP's non-multiplicative procedures — the eigenvector mapping and the weighted-arithmetic-mean 
aggregation rule — are the source of this controversial feature of the ARP. 

6 Summary and Conclusions 
We established that the geometric mean is the only method for deriving weights from multiplicative 
pairwise comparisons which satisfies fundamental consistency requirements. It is immune to scale-
inversion (or left-right) rank reversal as well as to Belton and Gear's rank reversal. Weights generated 
by the geometric mean are independent of orders of operations and therefore unique across AHP 
hierarchies and are independent of the description of the problem. It is also the only solution which 
preserves the strong algebraic structure of the problem and is naturally (through the logarithmic 
isomorphism) consistent with the arithmetic mean solution in the additive case. 
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