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Abstract: Bayesian analysis proceeds after a prior distribution has been specified. 
Restricting Bayesian priors to conjugate distributions may yield sub-optimal 
representations of an expert's prior beliefs. Additionally, there are some cases in which 
typical techniques for prior elicitation may have some limitations. A non-conjugate 
approach to Bayesian inference making use of sampling/importance resampling and the 
Analytic Hierarchy Process redresses these problems. 

Introduction 

The Bayesian paradigm allows one to incorporate prior information into statistical models for decision-
making. Prior information is combined with data using the axioms of probability, yielding 
probabilistically coherent posterior distributions for parameters of interest. In this paradigm, there are 
three general types of quantities: the background information existing at the beginning of the study 
(represented by what is called the prior distribution, p(0), the data on the variables of interest 
(represented by the likelihood, p(y10), and the updated information resulting from the combination of the 
prior and the likelihood (known as the posterior, p(Oty)). These quantities are related to one another by 
the equation: 
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Equation 1 reveals how prior belief and data interact to influence decision-making in the Bayesian 
paradigm. We begin with our prior beliefs about the outcome of a probabilistic event. Then, the data is 
obtained and combined with the prior to produce the posterior, the updated representation'of our beliefs. 
Since the posterior represents all the information that is available, it can then be used in subsequent 
analyses as a new prior. Hence, updating may be performed sequentially, as each piece of data becomes 
available, or collectively, when all the data to be gathered has been. The posterior will represent updated 
belief equivalently whether updating occurs sequentially or collectively. 

It is worthwhile to note that an infinite number of prior distributions can be specified, including ones that 
are bizarre or pathological. Asymptotically, the influence of the prior on the posterior disappears. 
However, since many analyses are conducted with relatively small sample sizes, the construction of a prior 
should be undertaken carefully. The credence of small sample-size Bayesian analyses is partially 
predicated on the usage of a prior distribution that the researcher and/or the consumers of research rind 
reasonable. In many cases, a non-informative prior is used to represent prior ignorance about the 
distribution of a parameter under consideration. However, in other cases we have relevant information 
and wish to use it in the conduct of a Bayesian analysis. In this situation a method for eliciting prior 
information and a method for incorporating that information in a Bayesian analysis are needed. 

Berger (1985) has noted that the most common technique is to assume the prior density can be represented 
reasonably well by a member of the family of prior distributions which permit a conjugate analysis to be 
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performed. For example, a Beta(2, 3) prior may seem to be a reasonable approximation to one's prior 
beliefs for a binomial process. If the conjugate density does indeed provide a reasonable approximation, 
obtaining the posterior becomes relatively straightforward. However, this approach may not work in all 
situations. For example, selection of the parameters of the conjugate distribution is frequently done to be 
concordant with the subjective prior mean and variance. It may be, however, that the person supplying the 
probabilities is not easily able to articulate a particular moment of the distribution, such as the variance. 
For example, the problem may be such that a person cannot generate a specific numeric estimate of the 
variance with reasonable certainty, or it may be that the person has not received enough exposure to 
statistical concepts to generate a good estimate of the variance. Alternatively, the person may supply a 
distribution that is not well approximated by a conjugate distribution. 

Another method for constructing a prior offered by Berger is the histogram method. The person supplying 
the prior probabilities is asked to draw a histogram representing his or her prior beliefs. A problem with 
this method is that tail areas may not be included. For example, there may be a very small probability that 
the parameter takes on values above and below the range of the histogram. Two rejoinders may be 
offered, however. First, the person supplying the probabilities is free to continue specifying the histogram 
until he or she is feels that the distribution has been reasonably well specified. Second, the use of a 
conjugate prior, while ensuring that tail areas are represented, does not ensure that tail areas are 
represented reasonably accurately (Berger, 1985). It is probably inappropriate to ask a person whether, 
between the fourth and fifth standard deviation, a particular normal distribution's decay toward the 
asymptote reasonably reflects the person's actual prior probabilities. Berger also mentions another caveat 
associated with the histogram method, i.e., "the prior density so obtained is somewhat difficult to work 
with" (1985, p. 77). We will show, however, that this difficulty is readily addressed using Monte Carlo 
methods. 

The Analytic Hierarchy Process and Prior Elicitation 

As Yager (1979) has noted, the Analytic Hierarchy Process (ARP; Saaty, 1995) can be used to elicit 
probability distributions. A matrix of ratios can be constructed such that each ratio expresses the 
perceived likelihood that one event will obtain as compared to another. The unit eigenvector of the matrix 
is then extracted. Since the elements of the unit eigenvector sum to one, they can be taken as the 
probabilities of the component events. Hence, the AHP can be used to generate a histogram of prior 
probabilities in a straightforward manner. A series of intervals, whose relative likelihoods will 
subsequently be assessed by pairwise comparisons to yield a probability distribution, are inserted into 
model as objectives. 

There are a few advantages to using the AHP to elicit probabilities. First, the person supplying the 
judgments need only make pairwise comparisons among stimuli. The study of human cognition on 
pairwise comparative judgment tasks goes back to the birth of psychology as a field (e.g., Thurstone, 
1927). Early research in the emerging field then known as psychophysics sought to understand the 
nuances of comparative judgment; what was not contested, however, is that discriminability of features 
often seems to be enhanced by the presence of a similar object for comparison. More recently, the 
judgment and decision-making literature has shown that performance on decision tasks involving 
probability can be quite mixed. Bolger and Wright (1992) reviewed twenty judgment studies of experts 
and concluded that experts are variably calibrated when making probability judgments in their areas of 
expertise. Since the quality of judgments is negatively related to the cognitive processing load (Gilbert, 
1989), we can see that the straightforward nature of the pairwise comparison task may facilitate the 
performance of the person supplying probability judgments. A second advantage of using AHP to elicit 
probability judgments is that there is no need for the person supplying judgments to explicitly articulate 
knowledge about the moments of the probability distribution. In contrast, the conjugate method is most 
profitably employed with explicit quantification of such parameters. Third, the AHP provides information 
about the inconsistency of the judgment matrix. This information allows for two further possibilities in 
the case of substantial inconsistency. First, the person supplying judgments may decide to re-evaluate his 
or her comparisons so that consistency may be improved. Or, second, the person may decide to re-
distribute some weight to tail areas, effectively flattening the prior. 
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Sampling/Importance Resampling 

Historically, the evaluation of integrals by numerical methods in a non-conjugate Bayesian analysis could 
make a noteworthy imposition on the analyst. However, in recent years a number of Monte Carlo 
techniques have been developed which facilitate these analyses (e.g., Tanner, 1996). 
Sampling/importance resampling (SIR), introduced by Rubin (1987) is a general Monte Carlo procedure 
for simulating posterior distributions (see also Albert, 1993, Smith and Gelfand, 1992). Assume there are 
two probability distributions g(b) and h(0 that are relatively similar; moreover, h(0) is a distribution 
which is easy to simulate. The problem is to simulate g(6) using h(0. The SIR process for solving this 
problem can be summarized in three key steps as follows (Rubin, 1988). Draw a sample A, ..., ist,„,j= 1, 

in from h(0. For each member of the sample, calculate its "importance ratio" or sample weight: 
g(01) 

IP - 
J h(01) 

Then take a second sample from A, ..., 0„„ called O'i, 6P,n , with probabilities proportional to w1, 
Wm. The density of the second sample, 0j, will approximate that of g(0). Mapping the relationship 
between the distributions in a Bayesian analysis and those in the SIR procedure is straightforward. In 
Equation 1, the desired distribution that is difficult to simulate, g(60, is the posterior, p(6[0. The 
distribution h(0 is the prior, p(E); it is easy to simulate because its distribution function has been specified 
before commencement of the analysis. The distribution of the ratios, w(b), is proportional to p(y10 up to a 
normalizing constant, c, where 5' is I p(0 pol 0 de. 

(2) 

The SIR procedure has been described as a "weighted bootstrap" (Smith and Gelfand, 1992). In the 
typical bootstrap, one samples from g with equal probabilities; here, however, one samples from 19, with 
probabilities varying as a function of g(g)/h(g). Thus, SIR shares features with p.p.s. sampling methods 
(Cochran, 1979, ch. 9). Like the bootstrap, the algorithm has quite general applicability, although it may 
not always be computationally efficient, as we will note momentarily. There are a few caveats associated 
with the use of SIR to approximate g(0). The greater the difference between g(0) and h(0, the more 
points, in, should be sampled from a In general, the accuracy of the technique increases with in, and 
decreases with increasing differences between g(69 and h(0. Moreover, it is important to ensure that the 
prior is adequately constructed. For example, if the prior is discrete and does not extend beyond a 
boundary value, b, then the posterior will also not extend beyond b. The area beyond b will occur in the 
prior with zero probability, and hence will also occur with zero probability in the posterior. For similar 
reasons, it is often desirable for the tails of the prior to be, heavier than those of the posterior. Heavy tails 
will help to ensure adequate sampling occurs in these regions of relatively low probability. Finally, SIR 
may provide a poor approximation if the posterior is highly concentrated in a small region of the prior. 
This is because a resampling of a very small proportion of the prior will generate the posterior. In such an 
instance, SIR will be an inefficient method of generating the posterior, and in will need to be increased. In 
general, however, the potential pitfalls of using SIR can be substantially reduced by a little care on the 
part of the analyst and a willingness to increase in. Moreover, SIR is attractive because it is easy to 
implement and does not require convergence monitoring as do Markov chain Monte Carlo techniques 
such as Gibbs sampling. 

Bayesian Analysis Using AMP and SIR 

We will illustrate the use of AMP in a. Bayesian analysis with an example. Suppose that a company 
recently has made a public offering of its stock. It is of interest to assess whether the stock's price will 
have gone up or down relative to its current price after 30 days have elapsed. Denote the probability of 
success (stock price increase) for this binomial event as x. The expert needs to construct a prior over the 
range of x, where 0 x 5 1. In order to create a histogram, the probability space needs to be subdivided 
into contiguous intervals. The expert feels that the probability of the stock price being up after 30 days is 
rather likely, but there is a reasonable chance it will fare poorly as well. Moreover, she feels capable of 
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making more refined judgments throughout the range from 25% to 85%. In the tails below 25% and 
above 85%, however, she feels less capable of making refined judgments. Hence, she decides to have 
narrower intervals in the range from 25% to 85%, and to have one broader interval for each tail. She 
decides that the intervals or "bins" for her histogram are: 0% x <25%, 25% x < 35%, 35% x <45%, 
45% 5 x < 55%, 55% x < 65%, 65% 5 x < 75%, 75% x < 85%, and 85% x5 100%. She conducts 
pairwise comparisons among the alternatives, and arrives at the prior shown in Figure 1. It is of interest to 
note that this prior would not be well approximated by a Beta distribution, potentially limiting the 
applicability of conjugate methods. 

Figure 1 
Prior for Stock Increase 
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The expert examines the inconsistency index and notes that her judgments do not possess substantial 
inconsistency. Thus, she decides to proceed with this prior. Note that, in using SIR, the prior is simulated, 
and then a weighted bootstrap of it is used to generate the posterior. Moreover, we noted that pitfalls can 
be avoided by monitoring the results of SIR. So, as an initial check on the SIR procedure, we compare the 
simulated to the actual prior. This check is not intended to be exhaustive, but merely illustrative of 
possible considerations one might peruse before turning to an examination of the posterior. 

Table I 
Means for Actual and Simulated Priors at Different Values of in

Actual 
Prior m = .500 m = 1,000 m = 5,000 in = 10,000 

Mean 0.608125 0.5997219 0.6113059 0.611477 0.609224 
Absolute 

Difference 0.0084031 0.0031809 0.003352 0.001099 
Percent Error 1.40% 0.52% 0.55% 0.18% 

Table 1 contains means for the actual prior and the simulated priors with m = 500, 1000, 5000, and 10000. 
Taking the absolute value of the discrepancy between the simulated prior mean and the actual prior mean 
as the numerator and the actual prior mean as the denominator, we can examine the percent error 
associated with values of m for different simulations. We see that at m = 500 the percent error is less than 
2%, not terribly large. However, increasing m beyond 500 causes the percent error to drop substantially. 
In this particular series of simulations, doubling m to equal 1,000 caused percent error to decrease by 
more than two times, while increasing m twentyfold to equal 10,000 led to a roughly eightfold reduction in 
percent error. Table 1 also reveals that in these samples percent error did not monotonically decrease with 
increasing m. These findings serve to underscore the approximate nature of Monte Carlo-based methods. 
Nonetheless, if we were to conduct an infinite number of replications of each size m, we would expect 
increased m to result in decreased percent error. 

Table 1 suggests that in = 5000 will provide reasonable accuracy without undue computation; hence, we 
proceed with 5000 as the value form. After the first month, the stock's price did indeed sell for more than 
it sold for at the outset of the inquiry. Analysis using SIR generated the posterior shown in Figure 2. The 
simulated posterior mean after one success and no failures was .684. A 95% credible interval for the 
mean can be obtained from the .025*mth and .975*mth observations. Here, this interval is (.312 _5 x 
5 .965). 
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Over the second month, the stock price increased again, while in the third month it declined. The expert 
decided to calculate the posteriors sequentially as the data arrived. By doing so, she had the most current 
information at any given time, for her own use or possibly as an input to another AHP model. Figure 3 
shows the prior and posteriors for all three months. The posterior was concentrated in the upper ranges 
during the second month because of the increase in the price( x = .722). In the third month, however, the 
posterior shifted to the left because of the declining price ( x = .649). 

Figure 2 
Actual Prior and Posterior after One Success 
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Figure 3 
Actual Prior and Sequentially Obtained Posteriors 
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The construction of a prior that accurately represents prior belief is important in Bayesian analyses, 
particularly when sample sizes are small. Conjugate priors, while flexible, may not be flexible enough for 
all cases. In contrast, the histogram-based method can be used to be create a more general class of priors. 
By using the AHP to create histogram-based priors, experts with or without advanced statistical 
backgrounds can create priors in a way that capitalizes on the strengths of the cognitive mechanism. SIR 
can then be used to generate posterior distributions and quantities of interest to any degree of accuracy 
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required. By propagating back and forth the information contained in priors and posteriors, Bayesian 
analysis can be nicely integrated into a network of AHP models. 
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