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Abstract

The mean random consistency index (MRCI) problem is an
important problem that is addressed by several AHP researchers.
The MRCI is the basis for defining the consistency ratio, CR(n)
which measures the consistency of the Jjudges or the decision
makers who assign relative scales in a pair wise fashion. It is
defined as the average value of the consistency indices, CI(n)
which are generated at random by N pairwise comparison matrices of
size n. In this paper, we first find a closed-form expression for
the largest eigenvalue of a three dimensional random pairwise
comparison matrix. Then by simulation analysis, we obtain the
sampling distribution and the corresponding mean and the standard
deviation of the distribution of the consistency index. The mean

and the standard deviations are compared with those obtained by
others.
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1. Introduction

The mean random consistency index (MRCI) problem is an
important problem that is addressed by several AHP researchers
[Saaty (1988), Golden and Wang (1990), Lane and Verdini (1989),
Vargas (1982), and Tummala and Wan (1994)]. The MRCI is the basis
for defining the consistency ratio, CR(n) which measures the
consistency of the 3judges or the decision makers who assign
relative scales in a pair wise fashion (forming a pairwise
comparison matrix (PCM) of size n) with respect to n attributes,
Al, Az, cen, An, of one level given the attributes of the next

higher level of the hierarchy associated with a decision problem.
The main purpose of AHP is to determine the (local) priority
vector w = (Wi, Wy geess W) of normalized weights corresponding

to A;, A,, ..., A, of each level and hence the global priority
weights associated with the alternatives occupying the last level




of the hierarchy. These global priority weights will then be used
to rank the alternatives.

If the judges assign relative scales by comggring each pair
Ai and Aj of the attributes as to the degree by which Ai dominates
A. as aij = wi/wj, and form the pairwise comparison matrix A, then
w can be found by solving the corresponding largest eigenvalue
problem as

Aw = nw

where A=((aij)). The relative scales are assigned by following the

nine-point scale taking values in Q = {1,2, ... 9,1,1/2,1/3, ...
1/9} [Saaty (1588)]. Notice that, by definition, aij = llaji' ajy
= 1, and a;s > 0 for i and j in Q. Thus the PCM A is a perfectly

consistent matrix. Therefore, the largest eigenvalug of A, namely,
Amm should be equal to n; that is, Awm=n. Thus solving

Aw = nw
to find w is equivalent to solving i

Aw = A W
max

The consistency index to measure the consistency of the
deviation of Aum from n is given by

CI(n) = (A -n)/(n-1)

Based on this measure, Saaty has defined the consistency ratio for
any PCM as

CR(n) = CI(n)/MRCI(n)

and recommended that CR(n) s 0.10 for an evaluator to be
consistent in assigning relative scales [Saaty (1988)]. The
MRCI(n) in the above equation is called the mean random
consistency index which is defined as the average value of the
consistency indices CI(n) which are generated by randomly
selecting N pairwise comparison matrices of size n; that is,

MRCI(n) = (X_ -n)/(n-1) (1)
where X  is the average or expected value of A .
max max

) Although sets of MRCI(n)s have been widely reported in the
literature, there have been no replicable simulations described
[Noble (1990), sanchez and Noble (1991)). Our objective in this
paper 1s to develop an algorithm based on "Power Method" to
improve the computational accuracy of MRCI(n) [Golub and Van Loan
(1989)]. Some authors have used the Power Method but did not




design the experiment to run simulations in terms of the random
seed as well as the number of different perturbations of the
elements of A, to obtain the sampling distribution of CI(n) [Noble
(1990), Sanchez and Noble (1991)]. We conducted simulation
experiments in this paper not only to find the sampling
distribution of cI(n) but also to conduct relevant statistical
analysis. We also have provided the comparative analysis with the
results obtained by others in this area.

2. Present Stdaies on MRCI(n)

From Eq.(1) we see that the consistency problem of AHP really
depends on the computation of MRCI(n). As mentioned above, several
authors have addressed this problem and obtained results as
presented in Table 1 (Saaty (1988), Golden and Wang (1990}, Lane
and Verdini (1989), Noble (1990)]. Saaty (at Wharton) and Uppuluri
(at oOak Ridge) were among the first to conduct simulation
experiments with 500 and 100 runs, respectively [Saaty (1988)].
Lane and Verdini, Golden and Wang, and Noble later followed with
2500, 1000, and 5000 simulation runs, respectively. Golden and
Wang, and Lane and Verdini did not explain how they have generated
the random PCM matrices and found the corresponding MRCI(n)s.
Presumably, they followed the procedure which was used by Saaty
and Uppuluri.

Table 1. MRCI(n) and SD(CI(n)) from Previous Studies

MRCL=) SIXCKn))

Sourtz | Golden& lase& Noble Wharon Ok | Goldm & ILane&  Neoble Cek
Wang  Vexdini Ridge | Wrng  Verdini Ridge

# of Run 1000 2500 5000 500 100 1000 2500 5000 100

2

3 0.5799 052 0.49 0.58 0332 | 07381 0.70 0.67 0.5165
4 0.8921 0.37 0.2 0. 0.546 0.6299 Q.63 0.80 0.6580
5 1.1159 110 1.03 112 L1220 ] 05243 0.51 0.4% 0.5280
[ 12358 128 1.16 124 1.032 Q¢.4120 0.40 0.0 0.4247
7 13322 134 125 132 1.468 0.3358 .33 033 0.3473
H 1.3952 1.40 1.31 [.41 1402 [ 02395 028 028 02719
9 1.4537 1.45 1.36 1.45 1350 02382 023 0.24 02190
10 14332 1.4% 139 1.49 1.464 2131 021 13} 0.1691
13 L5117 NA 1.42 1.51 1576 | 0.1%46 NA 0.19 02161
12 1.5336 1.54 1.2 1.476 | 0.1663 0.17 0.17 0.5634
13 1557 N.A 1.46 1.564 0.15¢0 NA o.ls Q.1750
14 1.5714 1.57 1.48 1.568 0.1360 0.14 0.14 0.1483
15 1,5831 NA 1.49 1.586 11311 NA 0.13 0.1457

Saaty, on the other hand, found the An“ and the associated

normalized eigenvector w by raising pairwise comparison matrices
to increasing powers and normalizing the resulting system as

k
w = lim A e
k—w e Ae

where A is the pairwise comparison matrix and e is the vector
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consisting of 1/’s in each entry. He used these Amxs to determine

MRCI(n). Unfortunately this method 1is relatively unstable
numerically. While noting this instability, Noble used the Power

Method to find amax and conducted simulation experiments to

determine the corresponding MRCI(n)s. However, as mentioned above,
she did not design simulation experiment in terms of random seeds
and did not statistically analyze the results [Noble (1950}].

The Power Method and Saaty’s procedure are similar; both
depend upon the ratio between the 2 = and the next largest

eigenvalue and both have an O(l/Aix) convergence rate. However,

the Power Method is numerically more stable. Basically, it
normalizes trail vectors for the dominating eigenvector at every
iteration, while Saaty’s approach normalizes only at the very last
step. Therefore, we use the Power Method in finding A and

conduct simulation experiments to analyzex the results by a
rigorous statistical analysis. Before we do this, we shall find
the closed-form solution for obtaining AL for a

three-dimensional random PCM. We can use this expression to find

the expected value and the standard deviation of AL

3. Exact Solution of a“x for a 3-Dimensional Random PCH

Lane and Verdini found the exact value of imm by solving all

the 4913 characteristic equations of a 3-dimensional PCM (Lane and
Verdini (1989). Due to the special structure of the PCM, we can
find a closed form expression for A @S follows. Without the

loss of generality assume that

1 X 1/2
A= [1/X 1 Y
z 1/Y 1

where X, Y, 2 are identically and independently distributed random
variables with Uniform distribution over Q. The characteristic
equation corresponding to A is given by

(1-2)7 + XYZ + 1/(XYZ) — 3(1-A) = 0
Solving this cubic egquation, according to a standard procedure
[Tuma (1987)]

1/3

A o= 14 (x¥2)'° + 17 (xyz)'? (2)

nax

This expression for Amm is not new. Vargas obtained the same

result for a 3-dimensional PCM by decomposition {vargas (1982)].
Since he worked with deterministic matrices, he did not carry out
the mean and variance analysis as we will show below.
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By definition, i"x = E(?«.nx). Using Eg. (2) and simplifying,
we obtain the expected value as

- 3,,1/3
Amax,: = 1+2E°(X

) (3)
The equality in the above equation holds true because the random
variables are identically and independently distributed and have a
distribution which is symmetric with respect to the reciprocal
operation. In a similar fashion, we can find the variance,
Var(a ) as
max
1/3

1/3 1/3

yvar? (x*%)
) + 1 - E‘(x"a)] (4)

) + 3EX(X
1/3) Var (X1/3

— 3
Var(lmax) = Z[Var (f
+ 3E(X

Since the distribution of X is Uniform, we see that E(X'”)=1.143
and Var(X '7)=0.323. Therefore, we find that 2 ,=3.983 and

max,
Var(inm‘3)=1.735. Substituting these values in Egs.(3) and (4),
we obtain MRCI(3)=0.491, Var(CI(3))=0.434 and SD(CI(3)=0.659.

It is interesting to note only Noble has obtained this exact
value for MRCI(3). Lane and Verdini is about 6% over the exact
value. The rest are even worse. Both Golden and Wang, and Saaty’s

are over by 18% and the Uppuluri’s by 22%. The same is true for
variance even though the values are different.

4. Sampling Distribution of CI(n} By Simulation Analysis

We generate the (pseudo-) random numbers {X{} based on the
congruential generator ’

X; = (16807°x, ) mod 2147483647

with the (pseudo-) zero-one uniform variates {u } given by

ui = Xi/2147483647

This generator is a popular one in the sense that it has full
range, and has acceptable statistical performance [Noble (19%0),
Ripley (1987)]. ’

For each n, 3sns15, we shall use this generator to generate
N of n-dimensional pairwise comparison matrices at random. The
%“x of each PCHM will be found through the Power Method. The

sampling distribution of CI(n) will then be found from using all
N of A s.
n max

The number Nn is chosen toc make both the results have small

absolute and relative errors. For absolute error, we require that
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the width of the (approximate) confidence interval of Xn“is no
greater than 0.01. Let S be the sample standard deviation of
A for an n-dimensional PCM. Then it is known that

nax

MRCI(n) - A

Bax

5./ v n

converges in distribution to standard normal. Thus, for large n,
the width of the 100(1-a) percent confidence interval for MRCI(n)

is approximately given by

2 zagzsn
v n

where z is the 100(1-a/2) percentile of standard normal

distribution, and s is the realization of S . Therefore, we

obtain

Nz 40000z>,_s2 (5)

«/2"n

to insure that the width of the confidence interval is less than
0.01, where s is taken to be the maximum value of the SD(CI(n))s

obtained by Golden and Wang, Lane and Verdini, and Noble. Table 2
gives the minimal integral N that satisfies Egqg. (5) for

z,,=2.575 (a=0.01). Note that this implies N is decreasing with

n, which is different form all the previous studies mentioned
earlier.

For relative error, we want to ensure that the statistical
error does not affect the critical value too much, so that, we can
take a width which is less than B (0<B<l1l) of the critical value,
SMRCI(n). Thus

2
5,158n
N = (6)
" 5%8*MRCI(n)?

The third row of Table 2 gives the corresponding values of N with
n

$=0.1, B=0.05, and MRCI(n) being the minimum of ‘the three values
obtained by Golden and Wang, Lane and Verdini, and Noble. We now
use Egs.(5) and (6), to find N; from each equation and determine

the maximum of the two values. This value is taken to be the value
for our Nn (see row four of Table 2). Note that our values of N
n

for n=14 are substantially greater than those used in the previous
studies.

_ We _need n(n—l){z random numbers to generate one random
n-dimensional PCH. With the N specified in Table 2, the total
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number of random numbers used is around 8,500,000, which is
substantially below the cycle of this generator. Thus, We can use
distinct random numbers through our simulation which can reduce
the possible dependence of the repetition of random numbers in the
computation of AL

Table 2. Valuesof N,

) 4 3

B of andom | 1,410,000 732,000 739,000
Numbers waexd

Nn
(Eq.(11)
Nz
(Eg.(12))
Nao used

3 7 3 9 10 T 12 13 12 13
144493 103263 T2508 43021 19908 12339 15277 0 10041 Tss6 6391 S99 4359

467419 121397 53376 3957 14867 10061 6416 432 3369 25m 1297 LB4D 1993

470,000 122,000 73,000 44000 30,000 22,500 13300 1250 10300 7700 6300 5200 4,600

690,000 630,000 630,000 338,000 NLI0C ITTI00 308200 91,400 471200 433,000

We use N of Table 2 and simulate the corresponding sampling
n

distributions of c¢I(n) for n=3,4,5,...,15. The percentile
distributions are shown in Table 3 while the corresponding
cumulative distributions of CI(n) are described in Fig. 1. Table 4
describes the values for mean and the standard deviation of the
randon consistency index for n=3,4,5,...,15.

Table 3. Percentiles of Random Consistency Indices

1

pereenllle

L 1o 20 0 0 30 60 20 30 %0 93 39

L BRI N PR AWy §- |

~5

t
12
13
14
3]

0.000206 0.001293 0,002333
0.0J6533 0.100162 0,1é61030
0.160373 0283944 0394643
0332000 0.301611 0.647719
0.302730 0711730 ©0.337173
0.659667 0.337250 0.963123
0.739200 0.9602350 1057730
0.903730 1038300 1131727
0.990300 L.1I7400 |,191000
1.032000 1121000 1233230
1120000 LI1753%3 1272777
1171000 1261000 {,J09600
1.194500 1291000 1,336000 1392917

0.036330 0.021417 0.139980 0.217363 0.J0%539 0.500186 0.853328 1.313%2¢ 2012668 1390111
0.270195 @.193772 ©.3J3633 0.696294 0.893627 1127098 (33360 1.7242273 2013140 2392763
0,566346 0,724208 0.371<19 1020407 LIT1381 1326429 1499720 L7216%C 1.901647 2.133000
0.313435 0.953385 1.063727 1174000 1292432 140690 [.319846 1703403  1.514444  2.100000
0983706 1.096167 1.183842 1263381 1336458 (430000 1.343352 1676800 1.795000 2,001375$
1089430 1.1%30625 [.23%3333 132319 1404639 1.43403] [.363736 1.678300 LIETEIS 1.547600
L166765 1247500 1124350 1373750 1.436095 1502130 1.574040 1.6731S¢ 1.793130 1896000
1224500 1299130 1.396375 L.811788 1461893 1316727 1.552895 1.671267 1743167 L.377333
1274246 1375830 1388311 1.435464 1432370 1531278 (385389 L6701S¢ 1.737500 1.36%000
LII0467 1,364700 (413407 1.45627% 1502267 1343095 1593615 L6722 1.7IISTL LEWETSO
1343236 1339750 1432236 1472000 1SI4133  1.356895 1.606]00 1.67T67 1, T2350C 1.312667
1371000 1.412500 1.431667 1.438667 1317867 [.3566000 .1.609600 1672400 1.722667 1.3a3300
1.4J0846 1.463636 1.500030 1331730 1363615 1611667 1.668667 1.712000 1.796000

-

5. Conclusions

As in the case of 3-dimensiocnal random PCM, our results are
almost same of those of Noble. However, neither Noble nor Sanchez
and Noble determined the sampling distribution of CI(n). The
MRCI(n) values are smaller than those obtained by Golden and Wang,
Lane and Verdini, Saaty, and Uppuluri for n=3,4,5,...,15. The same
is true for SD(CI(n)). This indicates that the Power Method is
more accurate in computing A_ s and hence MRCI(n). The smaller

values of MRCI(n) means higher values for CR(n) which necessitates
the revision of using Saaty’s rule of CR(n) = 0.10 in assessing
the consistency of decision makers. Also, our analysis supports
the assertion made by Noble that the use of a numerically unstable
algorithm will bring about rounding errors that will overstate the
value of the mean, whereas the use of a more numerically stable
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algorithm would result in values closer to the true

randomly generated pairwise comparison matrices.
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Table 4. Values of MRCI(n) and SD(CI(x))

1

1.5
Figure 1. Cumulative Probability Distributions of Ci(n). {ne2,4.5...15)

2

2.5 3

n N, L, SD(Agax) MRin) SD(CI(m)

3 470,000 4.000 1.348 0.500 0.674

4 122,000 6.502 1.816 0.834 0.605

5 75,000  9.183 1.996 1.046 0.499

6 46,000 11.891 2.015 1.178 0.403

7 30,000 14.601 1.970 1.267 0328

8 22,500 17.28}F 1.947 1.326 0.278,

9 15,500 19.956 1.913 1.369 0.239

10 12,500 22.650 1.886 1.406 0.210

1 10,500 25.335 1.873 1.433 0.187

12 7,700  28.019 1.850 1.456 0.168

13 6300  30.684 1.851 1.474 0.154

14 5200  33.380 1.799 1.491 0.138
15 4,600 36012 1.810 1.501 0.129
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