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Abstract 

The mean random consistency index (MRCI) problem is an 
important problem that is addressed by several AHP researchers. 
The MRCI is the basis for defining the consistency ratio, CR(n) 
which measures the consistency of the judges or the decision 
makers who assign relative scales in a pair wise fashion. It is 
defined as the average value of the consistency indices, CI(n) 
which are generated at random by N pairwise comparison matrices of 
size n. In this paper, we first find a closed-form expression for 
the largest eigenvalue of a three dimensional random pairwise 
comparison matrix. Then by simulation analysis, we obtain the 
sampling distribution and the corresponding mean and the standard 
deviation of the distribution of the consistency index. The mean 
and the standard deviations are compared with those obtained by 
others. 
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1. Introduction 

The mean random consistency index (MRCI) problem is an 
important problem that is addressed by several AMP researchers 
[Saaty (1988), Golden and Wang (1990), Lane and Verdini (1989), 
Vargas (1982), and Tummala and Wan (1994)]. The MRCI is the basis 
for defining the consistency ratio, CR(n) which measures the 
consistency of the judges or the decision makers who assign 
relative scales in a pair wise fashion (forming a pairwise 
comparison matrix (PCM) of size n) with respect to n attributes, 
Al, A2, ..., An, of one level given the attributes of the next 

higher level of the hierarchy associated with a decision problem. 
The main purpose of AMP is to determine the (local) priority 
vector w = (wl, w2 wn) of normalized weights corresponding 

to Al, A2, ..., An of each level and hence the global priority 

weights associated with the alternatives occupying the last level 
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of the hierarchy. These global priority weights will then be used 
to rank the alternatives. 

If the judges assign relative scales by comparing each pair 
A. and A. of the attributes as to the degree by which A. dominates 

Aj as aij = wi/wj, and form the pAirwise comparison matrix A, then 

w can be found by solving the corresponding largest eigenvalue 
problem as 

Aw = nw 

where A=((a.1.)). The relative scales are assigned by following the 
3 

nine-point scale taking values in O = {1,2, ... 9,1,1/2,1/3, ... 
1/9} [Saaty (1988)]. Notice that, by definition, aij = 1/aji, aii

= 1, and > 0 for i and j in Cl. Thus the PCM A is a perfectly 
13 

consistent matrix. Therefore, the largest eigenvalue of A, namely, 
A should be equal to n; that is, =n. Thus solving 

MaX Max 

Aw = nw 

to find w is equivalent to solving 

Aw A w 
Max 

The consistency index to measure the consistency of the 
deviation of A from n is given by max 

CI(n) = wax 

Based on this measure, Saaty has defined the consistency ratio for 
any PCM as 

CR(n) = CI(n)/MRCI(n) 

and recommended that CR(n) s 0.10 for an evaluator to be 
consistent in assigning relative scales (Saaty (1988)3. The 
MRCI(n) in the above equation is called the mean random 
consistency index which is defined as the average value of the 
consistency indices CI(n) which are generated by randomly 
selecting N pair-wise comparison matrices of size n; that is, 

MRCI(n) = -n)/(n-1) (1) 
MAX 

where 
Max 

is the average or expected value of A . 
MaX 

Although sets of MRCI(n)s have been widely reported in the 
literature, there have been no replicable simulations described 
[Noble (1990), Sanchez and Noble (1991)). Our objective in this 
paper is to develop an algorithm based on "Power Method" to 
improve the computational accuracy of MRCI(n) [Golub and Van Loan 
(1989)]. Some authors have used the Power Method but did not 
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design the experiment to run simulations in terms of the random 
seed as well as the number of different perturbations of the 
elements of A, to obtain the sampling distribution of CI(n) [Noble 
(1990), Sanchez and Noble (1991)]. We conducted simulation 
experiments in this paper not only to find the ampling 
distribution of CI(n) but also to conduct relevant statistical 
analysis. We also have provided the comparative analysis with the 
results obtained by others in this area. 

2. Present Studies on MRCI(n) 

From Eq.(1) we see that the consistency problem of AHP really 
depends on the computation of MRCI(n). As mentioned above, several 
authors have addressed this problem and obtained results as 
presented in Table 1 (Saaty (1988), Golden and Wang (1990), Lane 
and Verdini (1989), Noble (1990)]. Saaty (at Wharton) and Uppuluri 
(at Oak Ridge) were among the first to conduct simulation 
experiments with 500 and 100 runs, respectively [Saaty (1988)]. 
Lane and Verdini, Golden and Wang, and Noble later followed with 
2500, 1000, and 5000 simulation runs, respectively. Golden and 
Wang, and Lane and Verdini did not explain how they have generated 
the random PCM matrices and found the corresponding MRCI(n)s. 
Presumably, they followed the procedure which was used by Saaty. 
and Uppuluri. 

Table I. MRCI(n) and SD(CI n)) from Previous Studies 

MRCI(n) 50(01(n)) 

Source Golden& Luc& Nark Whiaton Oak Golde=1 Lute& Nate oak 
Wan; vet xidu_ wing vadini Ridge 

0003= woo zsoo soon soo lop moo 3300 5000 100 
et 
3 0.5799 0.32 0.49 0.58 0382 0.7381 0.70 0.67 0.5165 
4 0.8921 0.87 0.32 0.90 0346 0.6299 0.63 0.60 0.6380 
5 1.1159 1.10 113 1.12 1.120 0.3243 0.51 0.49 03280 
6 1/353 1-25 1.16 114 1.032 0.4120 0.40 0.40 0.4247 
7 1 3372 114 1_23 1.32 1.468 0.3358 0.33 0.33 0.3478 
8 1.3952 1.40 1.31 1.41 1.402 0-2395 0-28 0.23 02719 
9 1.4537 145 1.36 1.45 1.350 02382 0-24 0.24 0-2190 
10 1.4882 1.49 1.39 1.49 1.464 01131 021 0_21 0.1691 
11 15117 NA 1.42 1.51 1.576 0.1946 NA 0.19 0-2161 
la 15356 134 1.44 1.476 0.1663 0.17 0.17 0.5634 
13 13571 RA 1.46 1.564 0.1340 N.A. 0.15 0.1750 
14 1.5714 1.57 1.48 1.368 0.1360 0.14 0.14 0.1483 
13 1.5831 NA 1.49 1.386 1.1311 Na 0.13 0.1457 

Saaty, on the other hand, found the A and the associated 
MAX 

normalized eigenvector w by raising pairwise comparison matrices 
to increasing powers and normalizing the resulting system as 

w = lim 
k--)04 

A k
e 

eTAe 

where A is the pairwise comparison matrix and e is the vector 
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consisting of l's in each entry. He used these A s to determine max 
MRCI(n). Unfortunately this method is relatively unstable 
numerically. While noting this instability, Noble used the Power 
Method to find Amax 

and conducted simulation experiments to 

determine the corresponding MRCI(n)s. However, as mentioned above, 
she did not design simulation experiment in terms of random seeds 
and did not statistically analyze the results [Noble (1990)). 

The Power Method and Saaty's procedure are similar; both 
depend upon the ratio between the A and the next largest 

eigenvalue and both have an 0(1/A2..) convergence rate. However, 

the Power Method is numerically, more stable. Basically, it 
normalizes trail vectors for the dominating eigenvector at every 
iteration, while Saaty's approach normalizes only at the very last 
step. Therefore, we use the Power Method in finding A and max 
conduct simulation experiments to analyze the results by a 
rigorous statistical analysis. Before we do this, we shall find 
the closed-form solution for obtaining A for a 

max 

three-dimensional random PCM. We can use this expression to find 
the expected value and the standard deviation of A... 

3. Exact Solution of A for a 3-Dimensional Random ?cm 
max 

Lane and Verdini found the exact value of X by solving all 
max 

the 4913 characteristic equations of a 3-dimensional PCM [Lane and 
Verdini (1989). Due to the special structure of the PCM, we can 
find a closed form expression for A as follows. Without the 

max 

loss of generality assume that 

1 X 1/Z) 
A= (1/X 1 

1/Y 1 

where X, 1, Z are identically and independently distributed random 
variables with Uniform distribution over Q. The characteristic 
equation corresponding to A is given by 

(1-A)3 + XYZ + 1/(XYZ) - 3(1-A) = 0 

Solving this cubic equation, according to a standard procedure 
[Tuma (1987)] 

max 
= 1+ (XYZ)1/3 + 1/ (XYZ)1/3 (2) 

This expression for A is not new. Vargas obtained the same max 
result for a 3-dimensional PCM by decomposition [Vargas (1982)]. 
Since he worked with deterministic matrices, he did not carry out 
the mean and variance analysis as we will show below. 
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By definition, X.m = E(X...). Using Eq. (2) and simplifying, 

we obtain the expected value as 

Xmax,3 = 1+2E3 (X1/3) (3) 

The equality in the above equation holds true because the random 
variables are identically and independently distributed and have a 
distribution which is symmetric with respect to the reciprocal 
operation. In a similar fashion, we can find the variance, 
Var(X..) as 

Var(Xmax) = 2[Var3 
(X

1/3
) + 3E3 

(X
1/3

) Var2 (X
1/3

) 
6 1/3 1 

+ 3E
4

(X
1/3
)Var(X1/3

) 1 E (X ) (4) 

Since the 61stribution of X is Uniform, we see that E(X1/3)=1.143 
and Var(X )=0.323. Therefore, we find that Amm,3=3.983 and 

Var(L)=1.735. Substituting these values in Eqs.(3) and (4), 

we obtain MRCI(3)=0.491, Var(CI(3))=0.434 and SD(CI(3)=0.659. 

It is interesting to note only Noble has obtained this exact 
value for 1IRCI(3). Lane and Verdini is about 6% over the exact 
value. The rest are even worse. Both Golden and Wang, and Saaty's 
are over by 18% and the Uppuluri's by 22%. The same is true for 
variance even though the values are different. 

4. Sampling Distribution of CI(n) By Simulation Analysis 

We generate the (pseudo-) random numbers {x1} based on the 

congruential generator 

. = (16807*x ) mod 2147483647 xi

with the (pseudo-) zero-one uniform variates } given by 

u1 x./2147483647 i

This generator is a popular one in the sense that it has full 
range, and has acceptable statistical performance [Noble (1990), 
Ripley (1987)]. 

For each n, 3sns15, we shall use this generator to generate 
N

n 
of n-dimensional pairwise comparison matrices at random. The 

A of each PCM will be found through the Power Method. The max 

sampling distribution of CI(n) will then be found from using all 
N of A s. 

max 

The number N. is chosen to make both the results have small 

absolute and relative errors. For absolute error, we require that 
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the width of the (approximate) confidence interval of is no .ax 

greater than 0.01. Let S. be the sample standard deviation of 

A for an n-dimensional PC?.!. Then it is known that 
SAX 

mRci(n) - 7 max 
S / n 

converges in distribution to standard normal. Thus, for large n, 
the width of the 100(1-a) percent confidence interval for MRCI(n) 
is approximately given by 

2 atz n 

ICC 

where z is the 100(1-a/2) percentile of standard normal 
CC/2 

distribution, and s is the realization of Sn. 
Therefore, we 

obtain 

2 2 
N
n 

k 40000z /2S
n (5) 

to insure that the width of the confidence interval is less than 
0.01, where s is taken to be the maximum value of the SD(CI(n))s 

. 
obtained by Golden and Wang, Lane and Verdini, and Noble. Table 2 
gives the minimal integral N. that satisfies Eq. (5) for 

a/2=2.575 (a=0.01). Note 
that this implies N. is decreasing with 

n, which is different form all the previous studies mentioned 
earlier. 

For relative error, we want to ensure that the statistical 
error does not affect the critical value too much, so that, we can 
take a width which is less than p (o<p<I) of the critical value, 
8MRCI(n). Thus 

2 

5. 155
N (6) 

II 
62/32MRCI(11)2

The third row of Table 2 gives the corresponding values of Nn with 

6=0.1, g=o.os, and mRci(n) being the minimum of the three values 
obtained by Golden and Wang, Lane and Verdini, and Noble. We now 
use Eqs.(5) and (6), to find N. from each equation and determine 

the maximum of the two values. This value is taken to be the value 
for our N (see row four of Table 2). Note that our values of N 

for ns14 are substantially greater than those used in the previous 
studies. 

We need n(n-1)/2 random numbers to generate one random 
n-dimensional PC?.!. With the Nn specified in Table 2, the total 



number of random numbers used is around 8,500,000, which is 

substantially below the cycle of this generator. Thus, we can use 

distinct random numbers through our simulation which can reduce 

the possible dependence of the repetition of random numbers in the 

computation of A . 

Table 2. Values of N, 

NA 
(E41.01)) 

No 
(F-4.(12)) 
Na

len -aid= 
NI=b0,1301C01 

3 4 3 6 7 3 9 10 11 12 13 IS 

144.493 105.263 72.901 45,071 29.905 77,729 13,277 12.04-4 10,043 7,666 6,291 5.199 4559 

467,419 121,597 13.376 23,9/7 14.867 10,061 6,416 4.842 3.869 2.372 2,292 1,143 1-595

470,020 122,000 73003 

1,410003 732,000 730.000 

46,030 30,000 22,5043 

690,030 630,003 630,000 

15,300 12.500 10,300 7,700 6.300 5.203 4,603 

558.000 562-300 177.103 308,200 491,400 473.200 483030 

We use N of Table 2 and simulate the corresponding sampling 

distributions of CI(n) for n=3,4,5,  15. The percentile 
distributions are shown in Table 3 while the corresponding 
cumulative distributions of CI(n) are described in Fig. 1. Table 
describes the values for mean and the standard deviation of the 
random consistency index for n=3,4,5,...,15. 

Table]. Percentiles of Random Consistency Indices 

1 5 
3 0.003206 0.001195 
4 0.036511 0.1150360 
5 0.160375 0238944 
6 0.332003 0.301611 
7 0.502750 0.711730 
3 0.659667 0.157230 
9 0.7719200 0.960250 

10 0.901750 1.051500 
11 0.990503 1.127400 
12 1.052003 1.181000 
13 1.120103 1.117531 
14 1.171003 1.261030 
15 1.194503 1.291000 

P4=410.69621941.

80 95 99 
0 0.038355 

20 30 40 50 W 70 SO 90 
.016330 0.031417 0.139930 0.217365 0.308519 0.500116 0.155525 1.513324 2.081661 2.890111 

0.161083 0.270895 0.393772 0.333635  0.595627 1.127091 1.2113560 1.742273 2025140 2392765 
0.394645 0.566346 0.724201 0.371419 1.0204117 1.171312 1.226429 1.497720 1.721690 1.901647 2.131000 
0.642719 0.813455 0.953333 1.061127 1.174000 1-292432 1403690 1529546 8.703403 18344

4 
2.800000 

00..963337175 0.983706 1.096267 1.1/3342 1.268381 1.336451 1A50003 1.345532 1.676300 1.795000 2.001375 
871 1.089430 1.180625 1.251333 1.332519 1.404639 1414053 1.563716 1.671500 1.767615 1.9476 

1.057750 
00

1.166765 1.242500 1,312450 1.375750 1.436095 1S02130 1574040 8.675154 1.753150 1.1960 
1.131717 

00

1.191000 
1.224900 1.299130 1.356875 1.411738 1.462893 1.516727 1.582395 1.671267 1.743167 1877333 

8.231250 
1.274846 1.335840 1.3811313 1.435464 1.452370 1.531271 1J1193119 1.670154 1.737500 1.349000 
1.310467 1.364700 1.413407 1.456275 1.502267 1.548095 1.591625 1.672125 1.735571 1.326750 

1.272727 1.3432286 1.389710 1.432236 1.472000 1.514111 1.556195 1.606300 1677167 17/3500 1.312667 
1.309600 1.371000 1.412100 1.451667 1.438667 1J27167 1.566000 8.60963a 8,677400 8.722667 8.80350,3 
1.336000 1,397917 8.470846 8.465676 1.500050 1.532750 1_163615 1.611667 1.638667 1.717003 1.796000 

5. Conclusions 

As in the case of 3-dimensional random PCM, our results are 
almost same of those of Noble. However, neither Noble nor Sanchez 
and Noble determined the sampling distribution of CI(n). The 
MRCI(n) values are smaller than those obtained by Golden and Wang, 
Lane and Verdini, Saaty, and Uppuluri for n=3,4,5 ,,,,, 15. The same 
is true for SD(CI(n)). This indicates that the Power Method is 
more accurate in computing A s and hence MRCI(n). The smaller 

1141% 

values of MRC/(n) means higher values for CR(n) which necessitates 
the revision of using Saaty's rule of CR(n) s 0.10 in assessing 
the consistency of decision makers. Also, our analysis supports 
the assertion made by Noble that the use of a numerically unstable 
algorithm will bring about rounding errors that will overstate the 
value of the mean, whereas the use of a more numerically stable 
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algorithm would result in values closer to the true mean for 
randomly generated pairwise comparison matrices. 

0.5 1 1.5 2 2.5 
Figure I. Cumulative Probability Distributions of Cl(n). 

Table 4. Values of MRCI(n) and SD(Cgn)) 

El N, SID(2.,max) MU(n) M(a(n)) 

3 470,000 4.000 1.348 0.500 0.674 
4 122,000 6.502 1.816 0.834 0.605 
5 73,000 9.183 1.996 1.046 0.499 
6 46,000 11.891 2.015 1.178 0.403 
7 30,000 14.601 1.970 1.267 0.328 
8 22,500 17.281 1.947 1.326 0.278 
9 15,500 19.956 1.913 1.369 0.239 
10 12,500 22.650 1.886 1.406 0.210 
11 10,500 25.335 1.873 1.433 0.187 
12 7,700 28.019 Laso 1.456 0.168 
13 6.300 30.684 1.851 1.474 0.L54 
14 5,200 33.380 1.799 1.491 0.133 
15 4,600 36.012 1.810 1.501 0.129 
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