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Abstract - This paper shows how interval 
judgments can be integrated into the analytic hierarchy 
process (AHP) to derive interactive decision support. The 
interval judgments, which indicate a range of values for 
the relative importance of factors, allow the decision maker 
(DM) io enter ambiguous preference statements. Such 
judgments are synthesized in the hierarchy to obtain weight 
intervals for the alternatives. As the interval judgments 
approximate the DM's preferences more and more closely 
the weight intervals become narrower. The interval AHP 
thus leads to an iterative process where the DM gradually 
refines ithe description of his preferences. The interval AHP 
is demonstrated by a numerical example, and the INPRE 
software is outlined to show how the method can be imple-
mented into an interactive decision support tool. 

1. INTRODUCTION 

In the analytic hierarchy process (Saaty, 1977,1980) the DM's preferences are elicited 
by pairwise comparisons. For each comparison the DM specifies a point estimate which 
reflects the relative importance of the two factors being compared. 

This paper considers the interval AHP, first described in Salo and Himininen 
(1990a, 1991b), where the DM can enter ranges of numerical values, i.e. intervals, 
in addition to point estimates when making the pairwise comparisons: The interval 
judgments permit tile DM to make ambiguous statements when he is either unwilling 
or unable to be explicit about his preferences. 

Throughout the process the interval judgments are synthesized in the decision 
hierarchy to obtain weight intervals for the alternatives. These weight intervals, found 
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by solving a series of linear programming problems, become narrower as the interval 
judgments describe the DM's preferences more and more precisely. When the weight 
intervals no longer overlap a complete preference order for the alternatives has been 
established. 

The interval AFT has considerable practical potential. The alternatives' weight 
intervals can be recomputed at any point of the process so that more interactive 
decision support can be given to the DM. Moreover, the most preferred alternative 
may sometimes be found before all the all the interval judgments have been specified. 
This can substantially reduce the amount of comparison work. 

This paper is organized as follows. Section 2 discusses relations between interval 
judgments and local priorities. Section 3 propagates interval judgments in the hierarchy 
to obtain weight intervals for the alternatives. Section 4 analyzes earlier statements to 
help the DM preserve consistency. Section 5 illustrates interval AHP in the context 
of a car selection problem. It also contains screen displays from the INPRE software, 
which is an implementation of the interval AR?. 

2. INTERVAL JUDGMENTS AND LOCAL PRIORITIES 

The DM can find it difficult to specify point estimates as required by the ARP. 
To alleviate such difficulties Saaty and Vargas (1987) propose that a range of values is 
associated with each pairwise comparison. These statements, called interval judgments, 
capture the subjective uncertainty in the DM's preferences. 

The interval judgments allow the DM to incorporate ambiguity into his preference 
statements. For example, instead of stating that the ith subelement is three times as 
important as the jth subelement, the DM can state that the ith subelement is at least 
two but no more than four times as important as the jth subelement. This interval 
judgment is denoted as rid = [lid, = 12,4]. 

The interval judgments can be written in matrix form as 

( 1  [la, tin] 

[12i, 7121] 1 

[ini, uni] [44, u,,21 
(1) 

From the reciprocal nature of the pairwise comparisons it follows that = 1 for 
i j. The matrix (1) is therefore determined once all the upper (or lower) bounds are 
known. 

Saaty and Vargas (1987) discuss ways of deriving local priorities from (1). They 
conclude that computing all the right eigenvect ors of reciprocal matrices whose elements 
lie in the intervals is practically an intractable task. The eigenvector is a nonlinear 
function of the entries of the matrix and no simple method for determining bounds for 
its components exists. The amount of-computation is formidable even if the elements 
of the comparison matrix are restricted to the first nine integers and their reciprocals. 
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Yoon (1988) applies the propagation of errors techniques to study the sensitivity 

of the local priority vector to errors in the comparison matrix. However, he replaces 
the right principal eigenvector by the normalized row sum of the comparison matrix in 
order to avoid complicated algebraic calculations. 

Arbel (1989) observes that the interval ki= [libuii] implies that the ith subele-
ment is at least /ii but no more than %Li' times as important as the jth subelement. 
Consequently any loca priority vector w = (wi,...,tv„) consistent with this statement 
must satisfy the constraints wi > hitui  and wi < ujiwi. The feasible region is the set 
of local priorities in 9n {w > 11 which satisfy all 
the constraints resulting from the interval judgments. In his paper Arbel discusses the 
properties of feasible rhgions and presents a numerical example. 

Arbel and Vargas (1991) suggest a method for deriving local priorities from incon-
sistent interval matrices and state optimization problems for finding the alternatives' 
weight intervals. Hoiwever, for each interval matrix a set of non-linear algebraic 
equations must be solved to determine the corresponding local priorities. Further-
more, the complexity Of the weight interval computation increases rapidly with the size 
of the hierarchy. Corkequently the approach in their paper is numerically infeasible 
even in small hierarchies. 

Salo and Himilainen (1990a, 1991b) present the first computationally effective 
solution to the problem of deriving weight intervals from non-empty feasible regions. 
The present paper describes this solution, which is based on solving a series of linear 
programming problems, and shows how the DM's judgments can be examined to help 

J him detect potential inconsistencies. 
A related approach to the analysis of value trees is developed in Salwand Hamaliinen 

(1991c). This methlid, called PAIRS, employs interval judgments to assess local 
weights. PAIRS determines a dominance structure for the alternatives by combining 
ambiguously specified local weights with information about the alternatives' character-
istics. 

3. PROCESSICsTG 

The feasible regio 

INTERVAL JUDGMENTS 

can be written as 

S = Q' n {wiwi > kw, w, < uippi} (2) 

where Iii, uji are the user-specified bounds. As in the AHP these bounds can be 
restricted to the numbers 1 through 9 and their reciprocals. However, the subsequent 
results hold even when they are allowed to take values in (0, co). The DM may enter 

.1these bounds one at a time, and he may also cancel earlier judgments. 
This section syn hesizes the approximate description of the DM's preferences to 

derive information about the desirability of the alternatives. The crucial assumption is 
that at each criterion there is a non-empty feasible region. 
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Interval arithmetic (see e.g. Moore, 1966) establishes upper and lower bounds for the 

results of arithmetic operations. However, in the propagation of local priorities interval 
arithmetic leads to meaningless results. The reason for this is that the components of a 
local priority vector are not independent as their sum must be equal to one. It is easy 
to come up with examples where interval arithmetic gives a value greater than one for 
the upper bound of an alternative's weight. 

Instead, we suggest that the upper bound for the weight of an alternative is 
computed as a solution to a maximization problem, where the objective function is 
the alternative's weight and the variables are the local priority vectors constrained to 
the feasible regions. Similarly the lower bound is found by minimizing the alternative's 
weight subject to the same constraints. 

This approach lads to 2n,„ optimization problems, where n„, is the number of 
alternatives. Fortunately both the maximization and minimization problems decom-
pose into a series of linear optimization tasks over the feasible regions. 

The following notation is introduced to present this decomposition. The number of 
levels in the hierarchy is in+ 1 with the topmost element on level 0 and the alternatives 
on level m. The number of elements on level k is nk, and ek,i is the lth element on 
level k. The set of indexes for the subelements of ekj is Dkj C 0 ) . - . 174+11. In other 
words, i E Dkj means that ek-faj is a subelement of eV* 

The feasible region at element 4,1 is Skj. Thus any to E Sk j satisfies the constraints 
resulting from the interval judgments made among the elements 4+1,1, i E Dkj with 
respect to cu. If wkj E Sk j and i E Dkj then wk j[i] is the share of the (global) weight 
of CM) given to element 41-1,i- The weight of the element eh) is denoted by vk j. By 
convention the weight of the topmost element is one, i.e. vs,/ = 1. 

For a fixed set of local priorities wk j E Skil the weights for the elements are computed 
as

= 

Thus vk j does not depend on the priorities wi bi for i > k. Straightforward calculation 
shows that Evil/ vk j = 1. 

Let a E {1, ...,n} so that e„,,,, is a dedsion alternative. For any fixed set of local 
priorities in the feasible regions (3) assigns a weight to em,„. By allowing the local 
priorities to vary over the feasible regions a set of weights, denoted by Vga, is associated 
with Cm,a. Theorem 1 gives V,„ as a solution to a series of linear programming problems. 

Theorem 1 At level m —1 fort =1,...,n,„_1 define 

= max w[a] tEsa-za
va = min tvial 
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Foe k = m — 2, ... ,0 1 =1,...,nh define recursively 

Vkj 

E ak = mm

max E vt+Liw[i] (6) 

E 4:+1,1w[i] ( 7 ) 
toESka 

Then V4 = [Koa AI

Proof Since the feasible regions are dosed, bounded sets and the alternative's 
weight is a continuous function of the local priorities the weight interval V. is a closed 
convex subset of [0, I.]. Let woo., , w_1,,_, be any feasible local priorities. Then 
for k, 0 < k < m —1 

nle 1 nt.4.1 

E E 
UNEDtj} 

nt 

• E Vkj( E uk+LiwkAil) 5=1 {iliEDs;} 
fit 

Vit al/A E 
j=1 

Applying the above Inequality repeatedly gives 

Dma E v=_Litv=_Li[aj 

• v=-Lirc_ii 
1=1 
no 

• E 71 401.1

i=1 

Thus v„,,,, < fl . By the compactness of the feasible regions there exist rim,/ E Skj such 
that the above inequalities become equalities. The proof for the lower bound is similar. 

Theorem 1 suggests an algorithm for computing the weight intervals for the alterna-
tives. First solve th 
Then proceed to lev 
the topmost element 

linear programs (4)-(5) to determine the numbers 17:,t_id, val 
Em —2 and solve problems (6)-(7). Continue to upper levels until 
has been reached. 

Modifications to feasible regions at level it do not affect the scalars 1.7Zi, zit for i> k. 
Thus only levels 0, it of the hierarchy must be recomputed if the scalars PZi , wed are 
stored for later use. This also means that changes in the upper parts of the hierarchy 
typically require less computation than changes on the lower levels. 

The linear programs (4)-(7) can be solved by enumeration if the set of extreme 
points of the feasible region Skj is known. Since 276, linear programs must be solved 
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at each criterion it may be computationally advantageous to determine the extreme 
points first. These can be generated by algorithms such as those reported in Matheiss 
and Rubin (1980). The literature of multicriteria optimization also contains relevant 
material (see e.g. Steuer, 1986). 

The decomposition in theorem 1 holds whenever the feasible regions are closed and 
convex sets. These requirements are met even if the feasible regions are obtained from 
a more general description of the DM's preferences. For example, the DM could impose 
constraints on the components of the local priority vector (e.g. 0.25 < i < 0.80) or 
state that two elements, taken together, are at least as important as a third one (e.g. 
wi wz > ws). 

However, in the sequel we assume that the constraints on the feasible regions have 
been derived from interval judgments. This convention is in keeping with the idea of 
eliciting preferences by pairwise comparisons, which is a fundamental feature of the 
AHP. Each interval judgment is essentially an ambiguous counterpart to a precisely 
specified pairwise comparison. 

4. REFINING INTERVAL JUDGMENTS 

It is possible that the DM wants to enter an interval judgment which contradicts the 
earlier ones. Accepting such a. constraint would lead to an inconsistent set of constraints 
and an empty feasible region so that the approach of section 3 could no longer be applied 
to synthesize the judgments. To avoid this problem the earlier statements are analyzed 
to give the DM an a priori characterization of consistent interval judgments. 

We make the following technical assumption about the feasible regions 

V E {1, , n} wES such that wi > 0. (8) 

The requirement (8) is justified as follows. If (8) did not hold for some i then the 
weight given to the ith subelement would be zero for all the local priority vectors in the 
feasible region. But then the ith subelement has been incorrectly structured because 
it does not have any impact on the upper level criterion. 

For each non-empty feasible region define the intervals Ai = [1q, id by 

fLiJ = 
to;

max — wes wi
1 
-r • uji 

The ratio in (9) is defined to be co if wi > 0,w5 = 0 and 0 if wi = wj = 0. From (8) 
it follows that there exists aw ES such that wi > 0, which in turn implies ilia > 0 
so that (10) is well defined. Moreover, if tzij has been specified then aij < ujj; thus 
IC I3. 

Interpreting the results in Potter and Anderson (1980) gives an efficient algorithm 
for computing the bounds flip Another way to determine these bounds is to employ 

0 

0 

a 
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Figure 1: The hierarchy for choosing a car 

specialized algorithms for solving linear fractional programming problems or to inspect 
the extreme points of' the feasible region (see e.g. Bazaraa. and Shetty, 1979). 

Assume that the DM modifies the judgment /ij to m and let S and S' denote the 
feasible regions before and after the modification. Then, by the results in Potter and 
Anderson (1980), 5' is a non-empty,aproper subset of S such that (8) holds for S' if 

1and only if the inter s Ili and iv overlap. Consequently consistency can be enforced 
by rejecting judgments which do not intersect iii . 

The intervals iii also characterize redundant judgments which do not reduce the 
feasible region. In particular, if Ai C II; then the constraints implied by judgments 
other than Ili are at least as tight as those corresponding to m, i.e. Ili is redundant. 
The following theorem summarizes the above results. - 

Theorem 2 S' C S and (8) holds for S' if and only if 0 #I 5 n ./1; c 

5. DECISION SUPPORT BY INPRE 

One of the foremost goals in the theoretical development of the AHP is to improve 
the decision support process. This goal can also be pursued by enhancing the human. 
computer interaction in decision aids based on the AHP (Himiliinen and Karjalainen, 
1991). Interaction techniques such as graphics and windowing, previously available on 
expensive workstations only (Salo and Himiliinen, 1990b, 1991a), can nowadays be 
implemented on personal computers. To make the most out of these resources we need 
to focus on computational feasibility and software implementations. We have developed 
software for the standard AHP (HIPRE v. 2.2 is a fully graphical implementation of the 
AHP) as well as for feedback modelling (for a description of NETPRE see Hamiliinen 
and Karjalainent 198k). INPRE adds the interval AHP to this set of software. 

In this section we demonstrate the interval AHP and the related INPRE software 
in the context of the hierarchy of Figure 1. This hierarchy for a car selection problem 
is due to Belton and Gear (1984). 

225-



WC 

top WH = 3Wp 

WH= 4211p 

Figure 2: The feasible region at the criterion cost 

In the indexes lower case letters denote the criteria. That is, b refers to the topmost 
element, the overall benefit, and c,p,s refer to the subcriteria cost, performance and 
style respectively. Upper case letters F, H, C refer to the alternatives Porche, Honda 
and Chevrolet. 

Assume that the DM starts by making the following statements. 
With respect to cost, 

• Honda is three to four times better than Porche 

• Chevrolet is at least six times better than Porche 

With respect to performance, 

• Porche is at most three times better than Honda 

• Porche is at least five times better than Chevrolet 

• Honda is at most three times better than Chevrolet 

With respect to style, 

• Porche is at least three times better than Honda, and five to seven times better 
than Chevrolet 

• Honda is better than Chevrolet 

At the cost criterion these interval judgments lead to the constraints 3wp < wir < 

4wp and wc > 6wp, which imply 3wEr < 2wc. Figure 2 shows the feasible region Se
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9 8 7 6 5 4 3 2 1 2 3 5 6 7 8 9 

porch. 3.0 

porch. 6.0 

honda 

Figure 3: A display for entering interval judgments 

4.0 honda 

cheuro1e 

cheurole 

1 4 6 corresponding to these constraints. Its extreme points are (0,0,1), (ko i6z), — 11 7 II , ' 
The intervals computed from (9)110), can be written in matrix form as 

( [31,4] [111] [0, ]
k [6, co] IL co] 1 

However, the matrix representation in (11) is not very clear. Therefore in the INPRE 
software another way of displaying interval judgments was adopted. In INPRE the 
interval judgments are visualized as horizontal bars (see Figure 3). New judgments 
are entered by moving the ends of these bars with the mouse. The intervals Li are 
indicated by the darker shaded parts of these bars. 

The maximum share of its weight that the criterion cost can give to Honda is
thus PH, = in the4em 1. Examining the feasible regions Sp and S, gives Till = 1P 3 
and 71,11 =j. Thus rrEf= maxwess ( lAw. liwe). At this point no constraining 
judgments have been 
Honda is vif b 11 
found to be 

made at the topmost criterion so that the maximum weight for 
.36. The other bounds for the alternatives' weight intervals are 

Vp = [ .00;0.78], VS = [0.00; 0.361, Vc = [0.08; 1.00]. r 

Figure 4, a screen display of INPRE, shows these weight intervals as well as the 
hierarchy. The numbers at the criteria are values of an ambiguity index (Salo and 
Hamilainen, 1991b), 
of local priorities. T 
criteria for which the 

which measures the amount of looseness in the characterization 
e description of the DM's preferences is more precise at those 

ambiguity index assigns smaller values. 
Assume that the DM considers cost to be less important a criterion than perfor-

mance or style. This statement implies the inequalities We < ws, and we < 
w„ and the extremk points of the feasible region at the topmost criterion are 

i), (0, 1, 0), (0,0,1). Using the numbers Vie', 11 1„17-7 computed before the maximum 
weight for Honda is found to be 1. The alternatives' weight intervals become 

Vp = 0.40; 0.78], VB. = [0.11;0.33], Vc = [0.08;0.42}. 
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honda cheurole 

Figure 4: The alternatives' weight intervals in the first phase 

Porche now dominates Honda because Vp lies above Vg 

Finally, assume that the DM considers performance to be at least three times as 
important as style. Figure 5 shows how this statement can be entered in INPRE as 
well as the bounds for the feasible region. After this statement the alternatives' weight 
intervals, also shown in Figure 5, become 

Vp = [0.46; 0.711, Vg = [0.15; 0.33], Vc = [0.08; 0.31]. 

At this point the lower bound iz r is greater than the upper bounds for the intervals Vif
and Vc. This implies that Porche is the most preferred one of the three alternatives. 

Note that the most preferred alternative was found without specifying all the bounds 
of the interval judgments. This indicates that the interval AHP may involve less 
comparison work than the traditional AHP. 

6. CONCLUSION 

This paper has presented a method for processing interval judgments in the AHP. 
The interval judgments are synthesized by linear programming to obtain weight inter-
vals for the decision alternatives. Each weight interval consists of weights generated 
by some set of feasible local priority vectors. During the process, as the DM gradually 
refines his preferences, these weight intervals become narrower. When they no longer 
overlap a preference order for the alternatives has been found. 

The INPRE software recomputes and visualizes updated weight intervals after each 
new preference statement. Consequently the interval AHP leads to a more interactive 

0 
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Figure 5: The final weight intervals 
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decision support process than the traditional AHP. This, in our view, is a significant 
enhancement to the methodology. Another improvement is that the interval AHP may 
involve less comparison work because the most preferred alternative may sometimes be 
identified before eliciting all the interval judgments. Moreover, INPRE shows that the 
interval AHP can be implemented into operational decision support tools. 
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