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1. Introduction 

We begin by honoring the name of Oskar Perron who proved a very powerful theorem in 
mathematics about real positive matrices. I regret not meeting Perron (1880-1975) before he died 
in Munich, Germany. My work on the Analytic Hierarchy Process with real positive reciprocal 
matrices A = (aij), aij>0, aji =aij

-1 for all i and j, leads to the principal eigenvalue and eigenvector 
without the need for invoking any of Perron’s results. Note that the order of these reciprocal 
matrices is not much larger than 7x7. They involve entries whose values lie between 9 and 1/9.  
Perron proved that if A = (aij) is an n × n real positive matrix then there is a positive real number 

maxλ , called the Perron root or the Perron–Frobenius eigenvalue, such that maxλ is a simple 
eigenvalue of A that is real and positive. All other eigenvalues λ of A (possibly complex) are 
strictly smaller than maxλ  in absolute value, |λ| < maxλ . There exists an eigenvector w = (w1,…,wn) 
of A with eigenvalue maxλ such that all components of w are positive: A w = maxλ w, wi > 0 for 1 ≤ 
i ≤ n. There also exists a positive left eigenvector v : vT A = maxλ vT, vi > 0. Perron also proved 
that the principal eigenvector w corresponding to maxλ  can be obtained by raising the matrix A to 
infinite powers. 

Interestingly, the principal eigenvalue and its principal eigenvector can be found for a real 
reciprocal positive matrix of small order without Perron’s theory. The principal eigenvalue and 
eigenvector can be obtained from the solution of a system of equations without using the powers 
of the matrix as does Perron. We observe that if we know either maxλ  or w, we also know the 
other. If for example, we know maxλ , we get w by solving in the familiar way, the homogenous 

system of linear equations: max
1

, 1,..., .
n

ij j i
j

a w w i nλ
=

= =∑  If we know w then because of the 

normalization condition 
1

1 
n

i
j

w
=

=∑ in our case, we obtain after taking the sum on both sides of the 

equation with respect to i and interchanging the sums on the left: max max
1 1 1

.
n n n

j ij i
i j i

w a wλ λ
= = =

= =∑ ∑ ∑ In 

other words we obtain maxλ  as the scalar product of the vector  w with the vector of column sums 
of the matrix A. If the matrix has real coefficient that are positive and if w is real and positive 
then maxλ is real and positive. But we do not have the fact that it is a simple eigenvalue and that it 
dominates all other eigenvalues in modulus. 
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We follow two routes to obtain the principal eigenvector w: one by using the general idea of 
perturbation of the coefficients of a consistent matrix, which also involves reciprocal values in 
the transpose position, and the other by considering the graph theoretic concept of dominance 
along paths of different lengths leading to Cesaro summability. For us, applied to AHP reciprocal 
matrices, Cesaro summability says that the average of the normalized vector of the row sums of 
each power of a positive reciprocal matrix is equal to the normalized vector of the row sums of 
the limiting power of that matrix, which of course according to Perron is the principal 
eigenvector of that matrix. The latter again gives the same answer as the theory of Perron does 
without the need for Perron’s logic whether that matrix is consistent or inconsistent by using 
perturbation arguments from the work of  J. H. Wilkinson yields the principal eigenvalue and 
eigenvector in the limit. 

2. Consistent positive reciprocal matrices 

Assume that one is given n stones, A1,..., An , with known weights w1,..., wn , respectively, and 
suppose that a matrix of pairwise ratios is formed whose rows give the ratios of the weights of 
each stone with respect to all others. The paired comparisons process using actual measurements 
for the elements being compared takes the form: 

𝐴1 𝐴2 ⋯ 𝐴𝑛
𝑤1 𝑤2 ⋯ 𝑤𝑛

𝐴1 𝑤1/𝑤1 𝑤1/𝑤2 ⋯ 𝑤1/𝑤𝑛
𝐴1 𝑤2/𝑤1 𝑤2/𝑤2 ⋯ 𝑤2/𝑤𝑛
⋮ ⋮ ⋮ ⋯ ⋮
𝐴𝑛 𝑤𝑛/𝑤1 𝑤𝑛/𝑤2 ⋯ 𝑤𝑛/𝑤𝑛

 

We note that we can recover the vector 1( ,..., )nw w w=  by solving the system of equations 
defined by:  

Aw =    

𝑤1/𝑤1 𝑤1/𝑤2 ⋯ 𝑤1/𝑤𝑛
𝑤2/𝑤1 𝑤2/𝑤2 ⋯ 𝑤2/𝑤𝑛
⋮ ⋮ ⋯ ⋮

𝑤𝑛/𝑤1 𝑤𝑛/𝑤2 ⋯ 𝑤𝑛/𝑤𝑛

       

𝑤1
𝑤2
⋮
𝑤𝑛

= 𝑛   

𝑤1
𝑤2
⋮
𝑤𝑛

  = 𝑛𝑤 

Solving this homogeneous system of linear equations Aw nw=  to find w is a trivial eigenvalue 
problem, because the existence of a solution depends on whether or not n is an eigenvalue of the 
characteristic equation of A.  But A has rank one and thus all its eigenvalues but one are equal to 
zero. The sum of the eigenvalues of a matrix is equal to its trace, the sum of its diagonal 
elements, which in this case is equal to n. Thus n is the largest or the principal eigenvalue of A 
and w is its corresponding principal eigenvector that is positive and unique to within 
multiplication by a constant, and thus belongs to a ratio scale.  We now know what must be done 
to recover the weights iw , whether they are known in advance or not. 
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Definition: An n by n matrix ( )ijA a= is consistent if , , , 1,...,ij jk ika a a i j k n= =  holds among its 
entries.  

We have for a consistent matrix 1k kA n A−= . A consistent matrix always has the form ( )i

j

wA
w

= . 

The consistent case has no need for the theorem of Perron to prove the existence of a largest real 
eigenvalue and a corresponding positive eigenvector nor that this vector is the limit to which 
powers of the matrix converge. Of course, real world reciprocal pairwise comparison matrices 
are very unlikely to be consistent unless they use actual measurement data. 
 
Now we give a mathematical discussion to show why when a matrix is inconsistent, we still need 
the principal right eigenvector for our priority vector. It is clear that no matter what method we 
use to derive the weights iw , we need to get them back as proportional to the expression

1
    1,...,

n

ij j
j

a w i n
=

=∑ , that is, we must solve
1

=    1,...,
n

ij j i
j

a w cw i n
=

=∑ .  Otherwise 

1
    1,...,

n

ij j
j

a w i n
=

=∑  would yield another set of different weights and they in turn can be used to 

form new expressions
1

    1,...,
n

ij j
j

a w i n
=

=∑ , and so on ad infinitum. Unless we solve the principal 

eigenvalue problem, our quest for priorities becomes meaningless. 
 
We learn from the consistent case that what we get on the right is proportional to the sum on the 
left that involves the same scale used to weight the judgments that we are looking for.  Thus we 
have the proportionality constant c. A better way to see this is to use the derived vector of 
priorities to weight each row of the matrix and take the sum.  This yields a new vector of 
priorities (relative dominance of each element) represented in the comparisons.  This vector can 
again be used to weight the rows and obtain still another vector of priorities. In the limit (if one 
exists), the limit vector itself can be used to weight the rows and get the limit vector back 
perhaps proportionately. Our general problem possibly with inconsistent judgments takes the 
form:  
 

𝐴𝑤 =  

1 𝑎12 ⋯ 𝑎1𝑛
1/𝑎12 1 ⋯ 𝑎2𝑛
⋮ ⋮ ⋮ ⋮

1/𝑎12 1/𝑎12 ⋯ 1

    

𝑤1
𝑤2
⋮
𝑤𝑛

  =  𝑐𝑤 

 
This homogeneous system of linear equations Aw cw= has a solution w if c is the principal 

eigenvalue of A .   That this is the case can be shown using an argument that involves both left 

and right eigenvectors of A.  Two vectors 1 1( ,..., ),  ( ,..., )n nx x x y y y= = are orthogonal if their scalar 

product 1 1 ... n nx y x y+ + is equal to zero. It is known that any left eigenvector of a matrix 
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corresponding to an eigenvalue is orthogonal to any right eigenvector corresponding to a 

different eigenvalue.  This property is known as biorthogonality. 

Theorem 1: For a given positive matrix A, the only positive vector w and only positive constant 
c that satisfy Aw = cw, is a vector w that is a positive multiple of the principal eigenvector of A, 
and the only such c is the principal eigenvalue of A. 
 
Proof:  We know that the right principal eigenvector and the principal eigenvalue satisfy our 
requirements.  We also know that the algebraic multiplicity of the principal eigenvalue is one, 
and that there is a positive left eigenvector of A (call it z) corresponding to the principal 
eigenvalue.  Suppose there is a positive vector y and a (necessarily positive) scalar d such that Ay 
= dy. If d and c are not equal, then by biorthogonality y is orthogonal to z, which is impossible 
since both vectors are positive.  If d and c are equal, then y and w are dependent since c has 
algebraic multiplicity one, and y is a positive multiple of w.  This completes the proof. 
 
Next we show that order holds for a consistent matrix A. Element Ai is said to dominate element 
Aj in one step, if the sum of the entries in row i of A is greater than the sum of the entries in row j. 
It is convenient to use the vector e = (1,…,1)T to express this dominance: Element Ai dominates 
element Aj in one step if (Ae)i > (Ae)j .  An element can dominate another element in more than 
one step by dominating other criteria that in turn dominate the second criterion. Two-step 
dominance is identified by squaring the matrix and summing its rows, three-step dominance by 
cubing it, and so on.  Thus, Ai dominates Aj in k steps if (Ake)i > (Ake)j .  Element Ai is said simply 
to dominate Aj if entry i of the vector obtained by averaging over the one step dominance vector, 
two step dominance vector, k step dominance vector and passing to the limit:                                                     

 

lim
𝑚 → ∞

1
𝑚
�𝐴𝑘𝑒/𝑒𝑇 𝐴𝑘𝑒
𝑚

𝑖=1

 

 
is greater than its entry j.  But this limit of weighted averages (the Cesaro sum) can be evaluated: 
We have for an n by n consistent matrix A:  A k = n k-1 A, A = (wi/wj) and the foregoing limit is 
simply the eigenvector w normalized.  In general, it is also true that the Cesaro sum converges to 
the same limit as does its kth term /k T kA e e A e  that yields k step dominance.  
 
Here we see that the requirement for rank takes on the particular form of the principal 
eigenvector.  We will not assume it for the inconsistent case but prove its necessity again for that 
more general case. 
 
 
 We now develop a necessary and sufficient condition for rank preservation.  For 
emphasis, recall from graph theory that an element  gives cumulative dominance of 
the ith element over the jth element along all chains of length m.  That is precisely how one 
measures the consistency relation between that row and each column.  In fact when A is 
consistent we have from Am = nm-1A that the entries of Am and those of A differ by a constant thus 
maintaining consistency. 
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 In general, consider 𝐴𝑚 = (𝑎𝑖𝑗
(𝑚)) . 

 
Theorem 1.  For a positive reciprocal matrix A 

lim
𝑚→∞

𝑎𝑖𝑘
(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖−1

=  lim
𝑚→∞

𝑎𝑖𝑠
(𝑚)

∑ 𝑎𝑖𝑠
(𝑚)𝑛

𝑖−1

,              𝑘, 𝑠 = 1, 2, … ,𝑛. 

 
Proof. Let 𝐵 = 𝑁𝐴𝑁−1be the Jordan canonical form of A given by 

 

𝐵 =  

𝜆1
𝐵2

⋱
𝐵𝑟

  , 

 
where 𝜆1 ≡  𝜆𝑚𝑎𝑥 , and 𝐵𝑝 , 𝑝 = 2, 3, … , 𝑟 is the 𝑛𝑝  ×  𝑛𝑝 Jordan block defined by  

 

𝐵 =  

𝜆𝑝 0 0 ⋯ 0 0
1 𝜆𝑝 0 0 0
0 1 𝜆𝑝 0 0
⋮ ⋱ ⋮
0 0 0 ⋯ 1 𝜆𝑝

  , 

 
where 𝜆𝑝 , 𝑝 = 2, … , 𝑟 are distinct eigenvalues with multiplicities 𝑛2, … ,𝑛𝑟 respectively, and 

∑ 𝑛𝑝 = 𝑛 − 1𝑟
𝑝=2 . We have 𝐴 = 𝑁−1𝐵𝑁 and 𝐴𝑚 = 𝑁−1𝐵𝑚𝐵, where 𝐵𝑚 is given by 

 

𝐵𝑝 =  

𝜆1𝑚 0 ⋯ 0
0 𝐵2𝑚 0
⋮ ⋱ ⋮
0 0 ⋯ 𝐵𝑟𝑚

  , 

 
Let us denote 𝑁−1 ≡ 𝐷 = �𝑑𝑖𝑗� and 𝑁 = (𝑛𝑖𝑗). We have 

  

𝐴𝑚𝐷𝐵𝑚𝑁 =  

𝑛11𝑑11𝜆1𝑚 + ⋯ , 𝑛12𝑑11𝜆1𝑚 + ⋯ , … , 𝑛1𝑛𝑑11𝜆1𝑚 + ⋯
𝑛11𝑑21𝜆1𝑚 + ⋯ , 𝑛12𝑑21𝜆1𝑚 + ⋯ , … , 𝑛1𝑛𝑑21𝜆1𝑚 + ⋯

⋮ ⋱ ⋮
𝑛11𝑑𝑛1𝜆1𝑚 + ⋯ , 𝑛12𝑑𝑛1𝜆1𝑚 + ⋯ , … , 𝑛1𝑛𝑑𝑛1𝜆1𝑚 + ⋯

 

 
Let 𝑒 = (1, 1, … , 1)𝑇 = 𝑎1𝑤1 + ⋯+ 𝑎𝑟𝑤𝑟 , where 𝑤𝑝 is the principal right eigenvector 
corresponding to 𝜆𝑝. We have 
 

𝑒𝑇𝐴𝑚 =  𝑎1𝜆1𝑚𝑤1𝑇 + ⋯+ 𝑎𝑟𝜆1𝑚𝑤1𝑇 

= �𝑛11�𝑑11𝜆1𝑚 + ⋯ , … ,𝑛1𝑛�𝑑11𝜆1𝑚 + ⋯
𝑛

𝑖=1

𝑛

𝑖=1

�. 
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Given two columns of 𝐴,𝑘 and 𝑠 we have  
 

𝑎𝑖𝑘
(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1
=  𝑛1𝑘𝑑𝑖1𝜆1𝑚+⋯

𝑛1𝑘 ∑ 𝑑𝑖1𝜆1𝑚+⋯
𝑛
𝑖=1

         and             𝑎𝑖𝑠
(𝑚)

∑ 𝑎𝑖𝑠
(𝑚)𝑛

𝑖=1
=  𝑛1𝑠𝑑𝑖1𝜆1𝑚+⋯

𝑛1𝑠 ∑ 𝑑𝑖1𝜆1𝑚+⋯
𝑛
𝑖=1

 
 
Since both numerators and denominators are polynomials in 𝜆𝑝𝑚,𝑝 = 1, 2, … , 𝑟, and 
𝜆1 =  𝜆𝑚𝑎𝑥 > �𝜆𝑝�,𝑝 ≠ 1, we have for the ith entries of two arbitrary columns k and s 

lim
𝑚→∞

𝑎𝑖𝑘
(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1

=  lim
𝑚→∞

𝑎𝑖𝑠
(𝑚)

∑ 𝑎𝑖𝑠
(𝑚)𝑛

𝑖−1

=  
𝑑𝑖1

∑ 𝑑𝑖1𝑛
𝑖−1

. 

 
 DEFINITION. A positive matrix 𝐴 is said to be m-dominant if there is an 𝑚0 such that for 
𝑚 ⩾  𝑚𝑛 either 𝑎𝑖𝑘

(𝑚) ⩾  𝑎𝑖′𝑘
(𝑚) or 𝑎𝑖𝑘

(𝑚) ⩽  𝑎𝑖′𝑘
(𝑚)for all k and for any pair i and i'. 

 
COROLLARY.  A positive reciprocal matrix is asymptotically m-dominant.2 

Proof.  We have from Theorem 1 that the normalized columns of Am  are the same in the limit.  
Since the elements in each row are identical, the result follows by choosing m0 to be the 
maximum of its values for each pair of rows. 
 We now show that for an inconsistent matrix A, rank is determined in terms of the powers 
of A.  To do this we demonstrate that there is a method of estimating x which coincides with the 
normalized limiting columns of A.  This method is precisely the eigenvalue method. 
 

Theorem 2.  lim𝑚→∞ �
𝑎𝑖𝑘

(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1
� =  𝑤𝑖, 𝑖 = 1,2, … ,𝑛. 

Proof.    From lim
𝑚→∞

� 𝐴𝑚𝑒
�|𝐴𝑚|�

� = 𝑤, we have 𝑤𝑖 =  lim
𝑚→∞

� 1
�|𝐴𝑚|�

� ∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑘=1 . 

Multiplying and dividing 𝑎𝑖𝑘
(𝑚) by ∑ 𝑎𝑖𝑘

(𝑚)𝑛
𝑘=1  we have on distributing the limit with respect 

to the finite sum 

𝑤𝑖 =  � lim
𝑚→∞

 �
𝑎𝑖𝑘

(𝑚)

�|𝐴𝑚|�
,
∑ 𝑎𝑖𝑘

(𝑚)𝑛
𝑖=1

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1

�
𝑛

𝑘=1

 

= � � lim
𝑚→∞

𝑎𝑖𝑘
(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1

�
𝑛

𝑘=1 

� lim
𝑚→∞

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1

�|𝐴𝑚|�
�.  

By Theorem 1 lim𝑚→∞
𝑎𝑖𝑘

(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1
 is the same constant for all 𝑘 hence we have 

𝑤𝑖 =  lim
𝑚→∞

𝑎𝑖𝑘
(𝑚)

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1

 �� lim
𝑚→∞

∑ 𝑎𝑖𝑘
(𝑚)𝑛

𝑖=1

�|𝐴𝑚|�
�

𝑛

𝑘=1

. 

Since �|𝐴𝑚|� =  ∑ ∑ 𝑎𝑖𝑘
(𝑚),𝑛

𝑘=1
𝑛
𝑖=1  the proof is complete. 

 
There is a natural way to derive the rank order of a set of alternatives from a pairwise 

comparison matrix A.  The rank order of each alternative is the relative proportion of its 
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dominance over the other alternatives.  This is obtained by adding the elements in each row in A 
and dividing by the total. However, A only captures the dominance of one alternative over each 
other in one step.  But an alternative can dominate a second by first dominating a third 
alternative and then the third dominates the second.  Thus, the first alternative dominates the 
second in two steps (along a path of length two).  It is known that the result for dominance in two 
steps is obtained by squaring the pairwise comparison matrix.  Similarly dominance can occur in 
three steps, four steps and so on, the value of each obtained by raising the matrix to the 
corresponding power.  The rank order of an alternative is the average of the relative values for 
dominance in one step, two steps, and so on.  We show below that when we take this infinite 
series of dominance along paths of length one, two, three, and so on and calculate its limiting 
value we obtain precisely the principal right eigenvector of the matrix A.  This demonstrates that 
the eigenvector is derived deductively to obtain a relative scale among n alternatives from their 
matrix of pairwise comparisons.  It is the desired solution because it preserves rank order rather 
than a convenient criterion introduced for minimization purposes.  

 
Theorem 3. The relative dominance of an alternative is given by the solution of the 

eigenvalue problem 𝐴𝑤 =  𝜆𝑚𝑎𝑥𝑤. 
 
Proof. The relative dominance of an alternative along all paths of length 𝑘 ⩽  𝑚 is given 

by 
1
𝑚
�

𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

𝑚

𝑘=1

. 

Let 

𝑠𝑘 =
𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

 
and 

𝑡𝑚 =
1
𝑚
�𝑠𝑘

𝑚

𝑘=1

. 

 Note that lim𝑚→∞ 𝑡𝑚 < ∞. This is a consequence of a theorem due to G. H. Hardy 
[1949] which gives necessary and sufficient conditions for a transformation of a convergent 
sequence to also be convergent. Let 𝑇 be such a transformation mapping 
 

(𝑠1, … , 𝑠𝑚) →  𝑡𝑚 =  �𝑐𝑚,𝑘𝑠𝑘

∞

𝑘=1

. 

 𝑇 is regular if 𝑡𝑚  → 𝑠 as 𝑚 → ∞ whenever 𝑠𝑘 → 𝑠 as k → ∞. It is known (Hardy, 1949) that 𝑇 
is regular if and only if the following conditions hold: 

(1) ∑ �𝑐𝑚,𝑘� < 𝐻∞
𝑘=1  (independent of 𝑚), 

(2) 𝑐𝑚,𝑘 → 𝛿𝑘 for each 𝑘, when 𝑚 → ∞, 
(3) ∑ 𝑐𝑚,𝑘 →  𝛿∞

𝑘=1  when 𝑚 → ∞, 
(4) 𝛿𝑘 = 0 for each 𝑘, 
(5) 𝛿 = 1. 

 
Here, 
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𝑐𝑚,𝑘 = �
1
𝑚

       𝑓𝑜𝑟 1 ⩽ 𝑘 ⩽  𝑚 

0          𝑓𝑜𝑟 𝑘 > 𝑚.         
, 

Thus, we have 
(1) ∑ �𝑐𝑚,𝑘� =  ∑ � 1

𝑚
� = 1𝑚

𝑘=1
∞
𝑘=1 , 

(2) 𝑐𝑚,𝑘 = 1
𝑚
→ 0 as 𝑚 → ∞. Hence (4) 𝛿𝑘 = 0 for each 𝑘, 

(3) ∑ 𝑐𝑚,𝑘 = ∑ ( 1
𝑚

) = 1 ∞
𝑘=1

∞
𝑘=1 and hence (5) 𝛿 = 1.   

 

It follows that 𝑇 is regular. Since  𝑠𝑘 = 𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

→ 𝑤 as 𝑘 → ∞ (Saaty, 1980), where 𝑤 is 
the principal right eigenvector of 𝐴, we have  

 

𝑡𝑚 = 1
𝑚
∑ 𝐴𝑘𝑒

𝑒𝑇𝐴𝑘𝑒
→ 𝑤𝑚

𝑘=1  as  𝑚 → ∞ 
   

In input/output analysis in economics multipliers are traced by raising the input/output 
matrix to higher and higher powers and taking their sums to obtain the overall impact of each 
sector of the economy on every other sector. 
 Still another argument can be constructed from Theorem 1 because for large m the 
normalized columns of Am  are the same and converge to the principal eigenvector. 

Theorem 4: The Cesaro sum  lim𝑚→∞
1
𝑚
∑ 𝐴𝑘𝑒

𝑒𝑇𝐴𝑘𝑒
𝑚
𝑘=1  is the principal right eigenvector of A. 

Proof: 

By Theorem 3 of Saaty and Vargas (1984) we know that lim𝑚→∞
1
𝑚
∑ 𝐴𝑘𝑒

𝑒𝑇𝐴𝑘𝑒
𝑚
𝑘=1 =  lim𝑘→∞

𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

. 

Multiplying lim𝑚→∞
1
𝑚
∑ 𝐴𝑘𝑒

𝑒𝑇𝐴𝑘𝑒
𝑚
𝑘=1  by 𝐴 on the left we have  

𝐴� lim
𝑚→∞

1
𝑚
�

𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

𝑚

𝑘=1

� = 𝐴� lim
𝑘→∞

𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

� 

=  � lim
𝑘→∞

𝑒𝑇𝐴𝑘+1𝑒
𝑒𝑇𝐴𝑘𝑒

�� lim
𝑘→∞

𝐴𝑘+1𝑒
𝑒𝑇𝐴𝑘+1𝑒

� = � lim
𝑘→∞

𝑒𝑇𝐴𝑘+1𝑒
𝑒𝑇𝐴𝑘𝑒

�� lim
𝑚→∞

1
𝑚
�

𝐴𝑘𝑒
𝑒𝑇𝐴𝑘𝑒

𝑚

𝑘=1

� 

There is a vector 𝑦 =  lim𝑚→∞
1
𝑚
∑ 𝐴𝑘𝑒

𝑒𝑇𝐴𝑘𝑒
𝑚
𝑘=1  and a constant 𝑑 = lim𝑘→∞

𝑒𝑇𝐴𝑘+1𝑒
𝑒𝑇𝐴𝑘𝑒

  such that 
𝐴𝑦 = 𝑑𝑦. Under the assumption that A has r distinct eigenvalues 1,..., rλ λ with multiplicities 

1,..., rn n , respectively, by using the Jordan canonical form of A we can write 1A N BN−= where 
N is an invertible matrix and 

𝐵 = �

𝐵1 0 ⋯ 0
0 𝐵2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐵𝑟

� and 𝐵𝑝 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜆𝑝 0 0 0 ⋯ 0
1 𝜆𝑝 0 0 ⋯ 0
0 1 𝜆𝑝 0 ⋯ 0
0 0 1 𝜆𝑝 ⋱ 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 ⋯ 1 𝜆𝑝⎦

⎥
⎥
⎥
⎥
⎥
⎤

 , 𝑝 = 1, … , 𝑟. 
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We have 𝐴𝑘 = 𝑁−1𝐵𝑘𝑁, 𝐵𝑘 =  

⎣
⎢
⎢
⎡𝐵1

𝑘 0 ⋯ 0
0 𝐵2𝑘 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐵𝑟𝑘⎦

⎥
⎥
⎤
 and  

 

𝐵𝑝𝑘 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜆𝑝𝑘 0 0 0 ⋯ 0

𝑘𝜆𝑝𝑘−1 𝜆𝑝𝑘 0 0 ⋯ 0
𝑘(𝑘−1)

2!
𝜆𝑝𝑘−2 𝑘𝜆𝑝𝑘−1 𝜆𝑝𝑘 0 ⋯ 0

𝑘(𝑘−1)(𝑘−2)
3!

𝜆𝑝𝑘−3
𝑘(𝑘−1)

2!
𝜆𝑝𝑘−2 𝑘𝜆𝑝𝑘−1 𝜆𝑝𝑘 ⋱ 0

⋮ ⋮ ⋮ ⋱ ⋱ ⋮
𝑘(𝑘−1)⋯(𝑘−𝑛𝑝+1)

(𝑛𝑝−1)!
𝜆𝑝
𝑘−𝑛𝑝+1 𝑘(𝑘−1)⋯(𝑘−𝑛𝑝+2)

(𝑛𝑝−2)!
𝜆𝑝
𝑘−𝑛𝑝+2         𝑘(𝑘−1)⋯(𝑘−𝑛𝑝+3)

(𝑛𝑝−3)!
𝜆𝑝
𝑘−𝑛𝑝+3             ⋯ 𝑘𝜆𝑝𝑘−1 𝜆𝑝𝑘⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 
Denoting 𝑁−1 = 𝐷 = �𝑑𝑖𝑗� and 𝑁 = �𝑛𝑖𝑗�we can write 𝐴𝑘 =  𝑁−1𝐵𝑘𝑁 = 𝐷𝐵𝑘𝑁.  The first 1n
columns of kA are given by  
 

𝐷𝑛1𝐵1
𝑘 =

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑑11𝜆1𝑘 + 𝑑12 �

𝑘
1
� 𝜆1𝑘−1 + ⋯+ 𝑑1𝑛1 �

𝑘
𝑛1 − 1

� 𝜆1
𝑘−𝑛1+1

𝑑21𝜆1𝑘 + 𝑑22 �
𝑘
1
� 𝜆1𝑘−1 +⋯+ 𝑑2𝑛1 �

𝑘
𝑛1 − 1

� 𝜆1
𝑘−𝑛1+1

⋮

𝑑𝑛1𝜆1𝑘 + 𝑑𝑛2 �
𝑘
1
�𝜆1𝑘−1 + ⋯+ 𝑑𝑛𝑛1 �

𝑘
𝑛1 − 1

� 𝜆1
𝑘−𝑛1+1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑑12𝜆1𝑘 + 𝑑13 �

𝑘
1
� 𝜆1𝑘−1 +⋯+ 𝑑1𝑛1 �

𝑘
𝑛1 − 2

� 𝜆1
𝑘−𝑛1+2

𝑑22𝜆1𝑘 + 𝑑23 �
𝑘
1
�𝜆1𝑘−1 + ⋯+ 𝑑2𝑛1 �

𝑘
𝑛1 − 2

� 𝜆1
𝑘−𝑛1+2

⋮

𝑑𝑛2𝜆1𝑘 + 𝑑𝑛3 �
𝑘
1
� 𝜆1𝑘−1 + ⋯+ 𝑑𝑛𝑛1 �

𝑘
𝑛1 − 2

� 𝜆1
𝑘−𝑛1+2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, … ,

⎣
⎢
⎢
⎢
⎡𝑑1𝑛1𝜆1

𝑘

𝑑2𝑛1𝜆1
𝑘

⋮
𝑑𝑛𝑛1𝜆1

𝑘⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎞

 

The next 2n  columns are given by  

𝐷𝑛1+1,𝑛2𝐵1
𝑘 =

⎝

⎜
⎜
⎜
⎜
⎛

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑑11𝜆1𝑘 + 𝑑12 �

𝑘
1
� 𝜆1𝑘−1 +⋯+ 𝑑1𝑛1 �

𝑘
𝑛1 − 1

� 𝜆1
𝑘−𝑛1+1

𝑑21𝜆1𝑘 + 𝑑22 �
𝑘
1
�𝜆1𝑘−1 + ⋯+ 𝑑2𝑛1 �

𝑘
𝑛1 − 1

� 𝜆1
𝑘−𝑛1+1

⋮

𝑑𝑛1𝜆1𝑘 + 𝑑𝑛2 �
𝑘
1
� 𝜆1𝑘−1 + ⋯+ 𝑑𝑛𝑛1 �

𝑘
𝑛1 − 1

� 𝜆1
𝑘−𝑛1+1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑑12𝜆1𝑘 + 𝑑13 �

𝑘
1
�𝜆1𝑘−1 + ⋯+ 𝑑1𝑛1 �

𝑘
𝑛1 − 2

� 𝜆1
𝑘−𝑛1+2

𝑑22𝜆1𝑘 + 𝑑23 �
𝑘
1
� 𝜆1𝑘−1 + ⋯+ 𝑑2𝑛1 �

𝑘
𝑛1 − 2

� 𝜆1
𝑘−𝑛1+2

⋮

𝑑𝑛2𝜆1𝑘 + 𝑑𝑛3 �
𝑘
1
� 𝜆1𝑘−1 +⋯+ 𝑑𝑛𝑛1 �

𝑘
𝑛1 − 2

� 𝜆1
𝑘−𝑛1+2

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, … ,

⎣
⎢
⎢
⎢
⎡𝑑1𝑛1𝜆1

𝑘

𝑑2𝑛1𝜆1
𝑘

⋮
𝑑𝑛𝑛1𝜆1

𝑘⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎟
⎟
⎞

 

and so on. 

Thus, we have 𝐴𝑘 =  �
∑ 𝑑1𝑗𝑛𝑗1𝜆1𝑘 + ∑ 𝑑1𝑗𝑛𝑗1𝜆2𝑘 + ⋯𝑛2

𝑗=𝑛1+1
𝑛1
𝑗=1 ⋯ ∑ 𝑑1𝑗𝑛𝑗𝑛𝜆1𝑘 + ∑ 𝑑1𝑗𝑛𝑗𝑛𝜆2𝑘 + ⋯𝑛2

𝑗=𝑛1+1
𝑛1
𝑗=1

⋮ ⋱ ⋮
∑ 𝑑𝑛𝑗𝑛𝑗1𝜆1𝑘 + ∑ 𝑑𝑛𝑗𝑛𝑗1𝜆2𝑘 + ⋯𝑛2

𝑗=𝑛1+1
𝑛1
𝑗=1 ⋯ ∑ 𝑑𝑛𝑗𝑛𝑗𝑛𝜆1𝑘 + ∑ 𝑑𝑛𝑗𝑛𝑗𝑛𝜆2𝑘 + ⋯𝑛2

𝑗=𝑛1+1
𝑛1
𝑗=1

�. 

Let us assume that 1 2 rλ λ λ≥ ≥ ≥ .  Then  

lim
𝑘→∞

𝑒𝑇𝐴𝑘+1𝑒
𝑒𝑇𝐴𝑘𝑒

=  lim
𝑘→∞

∑ 𝑑𝑖𝑗𝑛𝑖𝑗𝜆1𝑘+1 + ∑ 𝑑𝑖𝑗𝑛𝑖𝑗𝜆2𝑘+1 + ⋯𝑛2
𝑖,𝑗=𝑛1+1

𝑛1
𝑖,𝑗=1

∑ 𝑑𝑖𝑗𝑛𝑖𝑗𝜆1𝑘 + ∑ 𝑑𝑖𝑗𝑛𝑖𝑗𝜆2𝑘 + ⋯𝑛2
𝑖,𝑗=𝑛1+1

𝑛1
𝑖,𝑗=1

 

Since 1λ is the principal eigenvector of A and 1Ay yλ= , then 𝑦 =  lim𝑚→∞
1
𝑚
∑ 𝐴𝑘𝑒

𝑒𝑇𝐴𝑘𝑒
𝑚
𝑘=1 is the 

principal right eigenvector of A. 
  
An Example 

𝐴 =  �

1 2 3 4
1/2 1 5 6
1/3 1/5 1 7
1/4 1/6 1/7 1

� 
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𝐴2 =

⎝

⎜⎜
⎛

1 4 9 16
1
4

1 25 36
1
9

1
25

1 7
1
16

1
36

1
49

1 ⎠

⎟⎟
⎞

      

 

𝐴10 = �
923637. 1.02324 × 106 2.52682 × 106 7.73336 × 106
850356. 941992. 2.32613 × 106 7.11986 × 106
369456. 409271. 1.01053 × 106 3.09298 × 106
119539. 132434. 327011. 1.00078 × 106

� 

 

𝐴11 = �
4.21087 × 106 4.66478 × 106 1.15187 × 107 3.52551 × 107
3.87669 × 106 4.29457 × 106 1.06043 × 107 3.24561 × 107
1.68418 × 106 1.86579 × 106 4.60711 × 106 1.41002 × 107

544954. 603711. 1.49077 × 106 4.56261 × 106
� 

 
𝑒𝑇𝐴11𝑒
𝑒𝑇𝐴10𝑒

=  
12727501858921621127

93350880000
930627497489690773

31116960000
=  

12727501828921621127
2791882492469072319

= 4.558752692225857 

 

𝑒𝑇𝐴21𝑒
𝑒𝑇𝐴20𝑒 =  

16451807319718210925190569975581073
31122809988480000000

7217595910655130158238943803833633
62245619976960000000

=
32903614639436421850381139951162146
7217595910655130158238943803833633 = 4.55880532060014 

 
Actual Eigenvalues of A 

1

2

3

4

4.558805319078529
0.03996796194816203 1.583542975555991
0.03996796194816203 1.583542975555991
0.4788693951822055

λ
λ
λ
λ

=
= − +
= − −

= −

ä
ä
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