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Abstract -- When scheduling a set of jobs for a two machine fixed-sequence process, one has various ways 
for minimizing the makespan. Johnson's algorithm has been shown to be one of the better ways. Complete 
enumeration or versions of trial and error are costly in time, accuracy, and computer memory. Its 
disadvantages include an inability to perform sensitivity analysis, the dependency on the jobs themselves, 
and its limitation to two machines. Most scheduling heuristics center around the minimization of idle-time. 
This paper discusses a completely different approach by developing an Analytic Hierarchy Process (AHP) 
model for two machines and several heuristics for m > 2 machines. 
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1. Introduction 

,Scheduling is ordering or prioritization in time. The Analytic Hierarchy Process (AHP) is 
a fundamental methodology of prioritization [8-10] but so far, it has not been used methodically 
to set priorities of tasks with respect to time taking into consideration structural requirements. 
To that end, we set the task to apply the AHP in time scheduling. 

Johnson's [5] algorithm finds an optimal sequence of jobs for a two-machine fixed 
sequence job ship which minimizes makespan. The simplicity of his method encouraged others to 
generalize his ideas for m>2 machines, yet without success. Many cobinatorial approaches, have 
been presented for solving the problem [1,4,11,12] yet all suffer from the exponential time 
requirement characteristic of this problem. Since the general scheduling problem is NP-
complete, and all NP-complete problems cannot be solved with efficient algorithms, the research 
focus has been placed on heuristic development [3]. 

Palmer [7] suggested that higher priority should be assigned to jobs that tend to increase 
processing time as they more from one machine to the next. Campbell et al. [2] proposed to 
generate a set of m-1 two-machine problems from the original m-machine problem, apply the 
two-machine algorithm of Johnson to each of the m-1 sub-problems, and then employ the 
schedules which resulted in the lowest overall makespan. Nawaz et al. [6] proposed that a job 
with larger total processing time should have higher priority in the sequence and have shown that 
this proposal outperforms the heuristics proposed by Campbell et al. 

Given that the general job shop scheduling problem is NP-complete, the best algorithms 
require exponential time and all of the polynomial time heuristics encounter a decrease in 
efficiency as the number of jobs and the number of machines grow. However consider the 
potential power of the AHP. The AHP is a tool which attributes priorities to various elements of 
a problem. The absolute measurements associated with various aspects of a problem are either 
converted to [0,1] ratio scales for the purpose of developing priorities or to express dominance of 
one element over another. As such, employing the AHP in the job shop scheduling problem is 
an unique approach. However in order to generalize to the m>2 case, we will use a part of the 
strategy central to the Campbell et al. heuristic. 
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It has been proven that Johnson's algorithm' provides an order of jobs that minimizes total 
makespan if all of the jobs to which the algorithm is applied require two different machines in a 
fixed order of operation [5]. This same objective can also be met by proper application of the 
AHP. Consider a two-machine job shop in which all m jobs first require machine A then later 
require machine B. From the list of job times for each machine, we construct one list R={0, to 
be defined more carefully in a later section, where ri is the ith element of this list for all i 
satisfying i=0 ..... n. This list will become the intensity ratings for an AHP model. 

Since the AHP is a prioritization tool, each of the jobs to which this model is applied will 
be prioritized based on characteristics of the two machines and on the times required by the jobs. 
We will show that the magnitude of the times required are not relevant to the schedule, rather the 
prioritization of the jobs will be a function of the rank order of the required processing times. 
Those jobs with the larger synthesized priorities will be scheduled earlier than the jobs with the 
smaller synthesized priorities. It will also be shown that the rank order of jobs is a schedule with 
the minimum makespan in the m=2 machines case and provides the near minimum makespan in 
the m >2 machines case. 

2. Development of the Hierarchy 

To construct an AHP model, one must first decompose the problem into a goal, a set of 
criteria, and a list of alternatives [8-10]. The criteria which govern the jobs are the two 
machines involved in the process. Therefore the upper echelon of the hierarchy is determined by 
the nature of the problem. Here are the steps considered in the development of the lowest level. 

First one constructs the list of processing times 
across all jobs for the first machine. Next, one appends 
to this set the list of processing times across all jobs for 
the second machine, and then removes all duplicate 
elements. Next one sorts the list in ascending order, 
and then appends a hypothetical job time of co; this 
final list will be the, intensity ratings for an AHP model. 
Let R = {r1} be this ratings list, where ri is the 1th rating 
of the list for all i satisfying i=0,...,n, where n is the 
index of the element CO E R. See Figure 1. 

For an 
illustration, 
consider the 
problem defined 
by the data on 

the right. The list of all job times for the first machine is 
{2,8,1,4,3,2}. We append to this list the complete set of 
job times required on the second machine. After we 
remove the duplicates, we have {2,8,1,4,3,5,9} which is 
sorted to read {1,2,3,4,5,8,9}. Finally we append a time 

Ordering of the Jobs 

Figure 1 - The AHP Model of 
Johnson's Algorithm. Job 

Processing Times 

Machine A Machine B 

a 2 3 
b 8 2 
C 1 4 
d 4 5 
e 3 9 
f 2 7 

I Consider a two-machine fixed-sequence job shop. If the minimum time for a job appears on the first 
machine, the corresponding job is scheduled as early as possible else this job is scheduled as late as possible [5]. 
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of cc to this sorted result, and thus R={1,2,3,4,5,8,9, cc}, where i=0 is the smallest index of 
this list and i=n=7 is the largest. 

3. Validity of the Model 

The absolute mode of weighting the alternatives in the AHP is the manner in which the 
weights of each processing time are transferred to the jobs. This approach permits a large 
number of jobs to be easily scheduled [8]. In the absolute mode, each alternative is measured 
independently of the others [8-10]. Hence application of the absolute mode to the jobs will guide 
the schedule as it is based solely on the decreasing order of the priorities of the jobs. 

Definitions: Let R = {ri} be the ascending-order non-repetitive list of intensity ratings of all 
jobs between both machines of a two-machine fixed-sequence process, where ri is the ith intensity 
rating for all i satisfying i=0 ..... n, where n is the index of the element co E R (n = IR I-1). 
Let A; = v', i=0,...,n, B1 = 1 - vi, i=0,...,n-1, and Bo = 1, where A; and B1 are the idealized 
priorities of ri E R i=0,...,n for machines A and B, respectively. 

Theorem: Given R, for any v E (0,1/2 ], equally weighted application of A, and B, to all jobs 
of a fixed-order two-machine process yields a rank (schedule) of jobs with minimum makespan. 

Proof: Johnson's algorithm has been proven to find a job schedule with the minimum 
makespan for a fixed-sequence two-machine process [5]. By definition of R (r1<r1±/), we 
conclude that Ai > A1 .1 and B1 <B1,.1 i=0,...,n-1, which are respectively equivalent to vi > vi' t
and 1 - v1 < 1 - i=0,...,n, which holds for 0<v <1. 

Johnson's algorithm examines the times required by each job on both of the machines. 
Hence the machines act as the criteria governing the objective and determining the job placement 
within the schedule [5]. Since both machines are regarded as equally important, each must be 
prioritized equally and thus the priorities of both machines A and B are equal to 0.500. 

Any job not yet scheduled cannot interfere with the schedule. of jobs already situated, 
since the algorithm is based on the ascending order of processing times (once a job has been 
placed at the head of the schedule, all jobs considered thereafter must have times greater than or 
equal to those already placed). The minimum requirement a job can have of machine A is ro. If 
job a requires ro time on machine A, then job a must have the largest synthesized priority over 
all other jobs regardless of the additional priority job a is to acquire from its machine B rating. 
Since job a, by definition, must have the greatest synthesized priority, the machine B time of job 
a may be the smallest possible value, r1, (which corresponds to the smallest possible priority) 
without altering the assumption that the minimum occurred on machine A. Suppose job [3 has the 
next highest priority. The smallest time job may require without interfering with the schedule 
of job a is r1 for machine A. Since job fi cannot have a priority greater than that of job a, the 
greatest possible priority of job (3 must be less than the smallest priority of job a. Job could 
have a requirement of ro on B (which corresponds to the greatest priority of all machine B 
ratings). Thus we know that 

L 

Since the same argument holds (but in reverse fashion) for the jobs placed latest in the schedule, 

193 



Th

we know that jobs with the minimum times found on machitit B must have priorities lower than 
jobs considered for scheduling thereafter. Hence we can derive the relation: 

Bo + A1 5 B1 + (2) 

In general, once the ith rating has been applied to a job, all jobs considered thereafter have ratings 
greater than r1. Hence constraints (1) and (2) can be respectively generalized as follows: 

Th

) 
•-) 

Ai + B1,1 Ai.1 + Bn (3a) 

Bi + A1.1 < Bi.1 + An (3b) 

Substituting for A1 and B1 into constraint (3a), we have 

+ (1-vn + (1-v 0) (4) 
) 

which simplifies to ) 
v - 2v''' -v 

and to 

v 1(2v-1) v" 

(5) 

(6) 

Since v is positive, both the right side of (6) and the vi term of the left side of (6) are positive. 
For certain values of v, the (2v-1) term of the left side of (6) is negative hence guaranteeing (6) 
to hold. Therefore consider the following sub-problem derived from (6): 

2v-1 5 0 (7) 

which holds when 

v —1
2 (8) 

thus the parameter v as constrained by (3a) and (8) must satisfy 0<v5 'h. To fully justify the 
definitions of A1 and B1, we must also show that these definitions hold for constraint (3b). 
Furthermore, constraint (8) which was derived from (3a) must also satisfy (3b). As before, we 
substitute for A1 and B, into constraint (3b), and obtain 

(1-v 1) + v''' 5 (1-v' ') + v (9) 

which simplifies to 
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Cl

0 
Cl

0 which holds when 

a 

a reals, and thus the theorem is proven. 
0 
o 4. An Illustration (m=2) 
( ) 
( ) Suppose a two-machine fixed-sequence job shop is 

considering the arrangement of 5 different jobs each of 
) which has the technological requirement that they first be 

( 9 processed on machine A and then later processed on 
( machine B. The times required by these jobs are listed 

in Table I. The ordered list of times between all jobs 
across both machines are {1,2,5,6}, hence ro = 1, r1 = 
2, r2 = 5, and r3 = 6. Next, we append a time greater 
than 6 to this list; we now have {1,2,5,6,c}, and thus 
n=4. This new list will be applied to the ARP model 
as intensity ratings. The completed hierarchy for this 
example can be seen in Figure 2. 

The next step is the assignment of priorities of 
the rating intensities. The priorities are not a function 
of the values of the intensities. Rather, they are a 

Li function of their indices which are based on their 
orders. Hence, we define the priorities of the rating 
intensities of the machines based on the equations for A.1
and B1 defined in terms of the parameter v, where v is 
arbitrarily chosen within the range 0 to 1/2 excluding the 

and to 

-v + 2v < v" 

v 1(2v-1) v" 

(10) 

Since v is positive, both the right side of (11) and the'vi term of the left side of (11) are positive. 
For certain values of v, the (2v-1) term of the left side of (11) is negative hence guaranteeing 
(11) to hold. Thus consider the following sub-problem derived from (11): 

2v -1 0 

v < _1 
2 

(12) 

(13) 

For values of v satisfying 0<v Lc_ relations (4) and (9) are simultaneously satisfied. To 
disprove the theorem, one must show that there is no 
value for v which simultanesouly satisfies A; and Bi. Yet Table I - Job Time Requirements. 
we have just shown that v is in fact constrained and of the  

Job Machine A Machine 8 
a 2 6 
b 5 6 
c 1 2 
d 2 5 
e 6 2 

Ordering of the Jobs 

Machine A 
(0.500) 

Machine B 
(0.500) 

1 
2 2 
5 5 
6 6 

ern. 

Figure 2 - The AHP Model of 
Johnson's Algorithm. 

1 
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lower extreme value. Therefore, we can arbitrarily set v = Table H - Time Priorities. 
0.1. See Table II. Next we rate the jobs using the 
appropriate elements of R and synthesize the schedule which 

Machine 1 Machine 2 
is {c,a,d,b,e}. See Table III. For validation, we apply 1 - 1.0000 1 = 0.0000 

Johnson's algorithm directly and find agreement in the 2 - 0.1000 2 - 0.9000 
5 - 0.0100 5 = 0.9900 

optimal schedule which we note has a makespan of 22 time- 6 - 0.0010 6 = 0.9990 
- - - units. This proof demonstrated the minimality of the 0.0001 = 1.0000

makespan within the AHP model along lines similar to those  
used by Johnson to derive his classical result. 

Note that in addition to producing a rank order, 
we also have ratio scale priorities for the jobs which Table BIE - AHP Ratings Mode. 
can be used to compute expected times of completion 
of a job relative to the makespan time. 

5. Generalization to Three Machines and Beyond 

Johnson's approach is applicable only to the 
two machine problem, hence this restriction must also 
apply to the AHP approach. The algorithm makes no 
reference to a third machine, hence for one to extend 
the applicability of this approach, an appropriately 
justified method for dealing with the additional 
information and additional constraints must be found. 

Consider a three machine fixed-sequence 
process. If one were to disregard the second machine 
in a three machine process and use Johnson's 
algorithm, it is clear that the effects of the second 

Alternatives MACH A MACH B Total 
1 Job c 1 2 11 0.950 
2 Job a 2 6 11 0.549 
3 Job d 2 5 11 0.545 
4 Job b 5 6 11 0.505 
5 Job e 6 2 11 0.450 

Alternatives .5000 .5000 Total 
1 Job c 1.0000 0.9000 11 0.950 
2 Job a 0.1000 0.9990 1 1 0.549 
3 Job d 0.1000 0.9900 11 0.545 
4 Job b 0.0100 0.9990 11 0.505 
5 Job e 0.0010 0.9000 1 1 0.450 

Alternatives MACH A MACH B Total 
1 Job c 0.5000 0.4500 11 0.950 
2 Job a 0.0500 0.4995 11 0.549 
3 Job d 0.0500 0.4950 11 01545 
4 Job b 0.0050 0.4995 11 0.505 
5 Job e 0.0005 0.4500 11 0.450 

machine are not accounted for. Since the algorithm is 
concerned with the minimum time on either stage of a two-stage process, the coupling of the first 
and second machines or the second and third machines will help increase the likelihood that the 
influence of the second machine will be accounted for in the model. 

Both Johnson's algorithm and the 
AHP approach weight the job times required 
on the first and second stages. Thus to use 
this m=2 AHP scheduling approach with an 
m >2 machine fixed-sequence process, the m 
machine process must be examined as 
though it were a two machine process. 
Consider the coupled-machines approach. 

Suppose we couple the processes of 
several consecutive machines into a single 
all-encompassing process. In this case, we 
can reduce m to m' <m, henbe one can 
consider the job process to be composed of 
m' different stages rather than m different model for 4 machines. 
machines. For example, suppose m=4. We 

Figure 3 - A partially coupled AHP scheduling 
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can ample machines 1 and 2 together and leave machines 3 
(Th and 4 apart'. See Figure 3. Each of the rerriaining m' 
(Th stages, could themselves be coupled by this approach until 
(Th we have arrived at 2 distinct processing stages. See Figure 

4. Each coupling is simply the theoretical operation of the 
coupled machines as though they were one unit. Thus the 

.1 LIt amount of time required for a particular job on the coupled 
unit is greater than or equal to the total time required for 
that job on each machine coupled together. This approach 
assumes that there is no unused time during the operation of 
the coupled unit, when in reality, this coupled unit is simply 
a group of machines, one or more of which may encounter 
unutilized time prior to its deployment. Hence this 

Figure 4 - A fully coupled model. assumption must be accounted for and treated appropriately. 
Suppose we apply the coupling approach to m 

C) machines where one coupling is composed of i machines and the other coupling is composed of 

(-) m-i machines. If i >m-i, then the jobs rated by the coupling with i machines should have a total 
time generally larger than the total job times of the coupling with m-i machines; the converse is 
also possible. Hence there is a bias toward the coupling of fewer machines (and of lower times). 
Thus we propose the following solution. 

There are m-1 feasible coupling models. If one were to apply the m=2 AHP model to a 
particular coupling configuration, one would obtain the optimal solution within the domain of that 
coupling. This local optimum (the result from a coupling model) may not be a global optimum ( ) 
(the result if machine coupling had not taken place). For emphasis, we note that this local 

0 optimum assumes there is no unutilized time within the coupled-machines stage. Therefore' the 
time required on this coupled unit by the kth job is equal to the sum of the times required qn each 

( machine in this coupled unit by the kth job. Given that this assumption may not always hold, we 
consider all m-1 possible couplings and 
synthesize the m-1 local optimum ( • solutions. These m-1 sets of vectors can 
be synthesized together by the use of a 
governing hierarchy. Let pi.k be the 
synthesized priority of the ith job as 
found by the m=2 machine AHP model 
where the first criterion of this 2-
machine model has the first k machines 
coupled together and the second 
criterion has the remaining m-k 
machines coupled together. See Figure 
5. This governing hierarchy considers 
all local optima by weighting the 

t_ dominance of each coupling set on the 

1 

The Ordering of Jobs 

Coupling Set 1 
(1/[m-/J) 

Coupling Set 2 
affm-1.1) 

Coupling Set m-1 
(//[m-/J) 

Po.' 
Phi 

Pi.' 

P0.2 

P1.2 

Pj.2 

PO,n01 

Pj:m.1 

Figure 5 - The Hierarchy of Coupling Sets. 

2 Of course there exists other couplings, such as (1, 2, 3/4), (1, 2/3, 4), 1,1, 2/3/4), and (1/2/3, 4), but for 
the purpose of illustration, we show only (1/2, 3, 4). 
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global schedule. As such, the criteria level of this governing hierarchy is composed of the m-1 
coupling sets and the alternatives relative to each of these coupling sets is the local optimum as 
derived from the 2-machine case where each "machine" is the relevant coupling set. Since the 
AHP is designed to compile the judgments of a user, each local optimum is judged (and proven) 
to be the best set of weights (and optimal schedule) in that domain. Thus the AHP used in this 
manner will synthesize these m-1 local vectors into a single global vector. 

The global dominance that each of the m-1 vectors has depends on the dominance of its 
coupling. It may be that in certain situations, one particular coupling may be more dominant 
than another and in other situations, this particular coupling may be less dominant than another. 
Therefore across all situations in general, each coupling should be regarded as equally dominant 
as any other. Hence for each of the m-1 coupling sets (which are the criteria of Figure 5), we 
associate a priority of 1/(m-1) thus retaining the required property that the total of the priorities 
between all criteria is 1. The synthesized priority of the jobs is thus obtained by 

m-I m-i 
Pi. 1 1 p.

x. i M-1 M-1 x. 1 I' x
i = 1,...,n (14) 

where pi is the synthesized priority of the ith job, and j is the number of jobs to be scheduled. 
The rank order of these jobs indicates a balance between all feasible local optima. It may be that 
the synthesized rank as determined by the governing hierarchy is not equal to the rank of any of 
the local optima. However there are situations when to satisfy the majority, we may need to only 
partially satisfy each minority to maximize overall coverage [8]. 

6. An Illustration (m=6) Table IV - Job shop time requirements. 

Consider a fixed-sequence job shop 
composed of m=6 machines where each job must 
be processed on each machine for some 
predetermined time. Further, suppose there are 5 
jobs to be scheduled. The times required by the 
5 jobs on the 6 machines are indicated in Table 
IV. The first step in the procedure requires that 
one determine each of the 5 couplings. 

The first unit of the first coupling is 
composed of machine 1 and the second unit of the 
first coupling is composed of the sum total of 
times of machines 2, 3, 4, 5, and 6. See Table V. The ratings list for this local situation is {1, 
2, 3, 7, 8, 19, 23, 27, 33, 35, co 1, where i=0 is the index of the smallest rating, and i=n=10 
is the index of the largest. The weight of each rating for the first stage of this coupling set is: A;
= v1, i =0,...,10, 0<v 'h. Similarly, the weights of each of these ratings for the second stage 
of this coupling set is: 131 = 1 - v1, Vi, v satisfying i=-0,...,9, 0<v I/2, and B10 = 1. 

The first unit of the second coupling is composed of the sum of times required on 
machines 1 and 2, whereas the second unit of the second coupling is composed of the sum of 
times required on machines 3, 4, 5, and 6. See Table VI. The ratings list for this local situation 
is {4, 8, 9, 14, 16, 21, 28, 29, co), where i=0 is the index of the smallest rating of this list, and 
i =n=8 is the index of the largest. The weight of each rating for the first stage of this coupling 

Jobs 
Machines 

2 3 4 5 6 

a 7 
2 
8 

3 

2 
6 
6 
3 
5 

5 
6 
8 
3 
8 

6 
2 
8 
3 
3 

6 
7 
6 
5 
9 

4 

7 
5 
8 
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is: A, = vi, i=0,...,8, 0 < v 'h. Similarly, the 
weight of each rating for the second stage of this 
coupling set is: B1 = 1 - v1, V i, v satisfying 
i=0,...,7, 0<v.5½, and let B8 = 1. This 
process is reiterated for the remaining couplings. 

For each of these five two-stage processes, 
we compute the optimal schedule. Since each 
coupling set is restricted to 0 <v 1/2 , we 
arbitrarily set v=0.25 and compute the 5 local 
schedules based on this value of the parameter. 
We note these five optimal schedules are optimal 
in their respective two-stage domains and are not 
necessarily optimal in the m-stage domain. The 
five local vectors can be found in Table VII, 
where the local ranks are the local schedules. 

The second step in the m >2 problem is to 
construct the governing hierarchy. This hierarchy 
synthesizes together the m-1 vectors. The m-1 
criteria correspond to the m-1 coupling sets where 
each criterion receives a weight of 1/(m-1) = 
0.200. Since the goal is to determine a 
scheduling priority of each job, the 6 jobs are the 
alternatives. The weights have already been 
determined by the first step in the process (see 
Table VII). Finally, we synthesize the priorities 
of the criteria and alternatives of the governing 
hierarchy as defined by equation (14). These 
results are tabulated on the bottom of this page. 
The AHP derived schedule, {d,e,b,c,a}, requires 
56 time-units which can be verified as optimal by 
enumerating the 720 possible schedules. 

7. General Observations 

Recall that the coupled-machine notion 
relied on the assumption that the amount of time 
required by a job on a coupled unit is greater 
than or equal to the sum of times required by a 

Table V - Coupling set number I. 

Jobs 
Set 1 Set 2 

1 stma 2 3 4 5 6 stun 

a 7 7 2 5 6 6 4 23 
b 2 2 6 

. 
6 2! 7 6 27 

c 8 S 6 8 8 6 7 35 
d 1 1 3 3 3 5 5 19 
C 3 3 5 8 3 9 8 33 

Table VI - Coupling set number 2. 

Jobs 
Set 1 Set 2 

1 2 sum 3 4 5 6 stun 

a 7 2 -29 5 6 6 4 21 
b 2 6 8 6 2 7 6 21 
c 8 6 14 8 8 6 7 29 
d 1 3 ,4 3, 3 5 5 16 
e 3 5 8 8 3 9 8 28 

Table VII - Ideal weights for each coupling 
set (schedules for each two-stage coupling). 

Jobs Set 1 Set 2 Set 3 Set 4 Set 5 

a 0.507 0.531 0.500 0.122 0.469 
b 0.531 0.999 0.625 0.477 0.471 
c 0.998 0.623 0.998 0.313 0.781 
d 0.624 0.507 0.508 0.488 0.488 
e 0.625 0.998 0.531 0.377 0.377 

job on each machine represented by the coupled 
unit. In contrast, however, the coupled machine approach 
assumes that the amount of time required by a job in a 
coupled unit is equal to the sum of the times required by a 
job on each machine represented by the coupled unit. 
This assumption introduces problems when a machine 
enjoys idle time between the processing of jobs. It may be 
that the optimal schedule requires machine k to sit idle for 

Job 
Synthesized Results 

Ideal Priority Rank Order 
a 0.3137 

0.5296 
0.4754 
0.7496 
0.5299 

5 
3 
4 
1 
2 
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Table VIII - Job shop time requirements. time greater than 0 time units between consecutive 
jobs i and j. This idle time increases the time 
required on that coupled unit. However, since the 
machine time (and hence coupled-unit process time) 
spent idle is unknown, the ratings list contains the 
minimum time used on a coupled-unit and assumes 
no dead-time. 

To illustrate this problem, consider a modified 
version of the above example based on the data listed 
in Table VIII. The derived AHP synthesis for this 
example is in the table below. The synthesized 
schedule has a makespan of 53 time-units. After 
enumerating all possible schedules, we find the 

minimum makespan is 51. The AHP derived schedule is in the 93.3 percentile which means that 
93.3% of the possible schedules require a makespan equal to or greater than the AHP derived 
schedule. Thus the following must be asked: since the AHP approach does not guarantee an 
optimal schedule, •how efficient is the heuristic? 

Clearly, the larger the Percentile Index (PI), the better the heuristic. However, other 
indices exist which have more informative interpretations. The Optimality Index (0I) indicates 
the probability that the heuristic will give the optimal schedule. Like the PI, the greater the GI, 
the more valuable the heuristic. Yet the cost of attaining the optimal schedule may outweigh its 
benefit. it. Thus the Efficiency Index (El) is equal to the probability that the derived schedule is 

better than the mean makespan. The assurance of "better 
than expected" may be sufficient in certain problems, and 
the El may prove useful. 

To compute these indices, all possible schedules 
must be enumerated and compared to the AHP derived 
priorities. Simulation was repeated 500 times whereby the 
number of jobs and machines were randomly generated 
ranging between 2 and 5, and 2 and 50, respectively. The 
mean of each index was computed and the results are 

given in Table IX. 
Each of the indices shows that when m=2, the AHP derived outcome is optimal in all 

respects. However, the heuristic decreases in reliability as m increases. If m >2, this same 
conclusion can be drawn as n increases. Nonetheless, in each instance, El clearly indicates that 
the AHP result is better than average. Likewise, PI demonstrates that the percentile of the 
derived schedule is quite strong relative to all other possible schedules. OI, which seems to be 
the weakest indicator of all the indices, indicates that it is more difficult to derive the optimum 
schedule as n and m increase yet in each instance, it is still highly probable that the optimum 
makespan will be derived. Despite this seemingly pessimistic conclusion, by analyzing El, we 
know the makespan of the derived schedule is still better than the expected makespan. 

The potential' suboptimality of the schedule found with the m >2 AHP approach is due to 
the dead-time incurred by some of the machines between jobs. Since this unutilized time is not 
accounted for in the m >2 AHP model, the assumption regarding the amount of time a job will 
require of a coupled unit must hold. Since the optimal solution may have dead time, this 
assumption may not hold in all situations. Given that dead time can only accumulate between 

Machines 
Jobs 

2 3 4 6 

a 7 9 6 
3 5 7 7 6 

4 2 6 5 2 
ci 2 7 2 8 5 2 

2 2 6 7 6 4 

Job 
Synthesized Results 

Ideal Priority Rank Order 
a 0.4017 

0.6207 
0.5316 
0.3281 
0.5820 

4 
1 
3 
5 
2 
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Table IX - Composite of 500 simulations for different job-shop parameters. 

Mean Percentile Index 

Number 
of Jobs 

Number of Machines 

2 3 4 5 6 7 8 9 10 20 30 40 SO 

2 
3 
4 
5 

100 
100 
100 
100 

93.5 
94.0 
95.0 
95.3 

95.3 
90.7 
91.6 
94.1 

97 
89.8 
92.9 
93.2 

93.5 
94.0 
91.7 
93.0 

94.5 
90.7 
89.2 
93.1 

98.5 
90.2 
88.7 
89.8 

96.0 
90.3 
89.2 
90.0 

96.5 
91.2 
91.4 
90.0 

93.5 
90.2 
89.7 
88.8 

96.5 
90.8 
87.7 
89.6 

96.0 
90.0 
88.5 
88.5 

96.0 
89.1 

.84.2 
86.2 

Number 
of Jobs 

Mean Optimality Index 

Number of Machines 

2 3 4 5 6 7 8 9 10 20 30 40 50 

2 
3 
4 

100 
100 
100 
100 

87.0 
77.0 
72.0 
57.0 

88.5 
71.0 
60.0 
36.0 

94.0 
67.0 
55.0 
44.0 

87.0 
77.0 
54.0 
35.2 

89.0 
70.0 
48.0 
29.7 

97.0 
63.0 
39.0 
40.1 

92.0 
66.0 
41.0.
29.4 

93.0 
68.0 
53.0 
22.0 

87.0 
65.0 
40.1 
27.9 

93.0 
62.0 
42.1 
32.1 

92.0 
59.1 
42.8 
35.7 

92.0 
55.1 
52.5 
28.3 

Number 
of Jobs 

Mean Efficiency Index 

Number of Machines 

2, 3 4 5 6 7 8 9 10 20 30 40 50 

2 100 87.0 88.5 94.0 87.0 89.0 97.0 92.0 
3 100 93.0 91.0 91.0 95.0 91.0 94.0 95.0 
4 100 99.0 93.0 96.0 97.0 94.0 94.0 93.0 
5 100 97.0 98.0 96.0 99.0 98.4 98.7 96.9 

93.0 
94.0 
97.0 
98.5 

87.0 
91.0 
96.8 
98.7 

93.0: 
93.4 
91.8 
95.5 

91.0 
93.5 
93.8 
94.6 

90.0 
.91.1 
94.7 
94.7 

machines, there are m-1 possible locations for this unaccounted increase in job-time 
requirements. Thus as m increases, so too does the probability that the optimal schedule may 
utilize unaccounted dead time. As the number of jobs increases, the number of feasible schedules 
increases, and thus the likelihood also grows that this dead time will occur. Hence; the zero-
dead-time assumption becomes more unrealistic as the system grows in size and the overall 
efficiency of the heuristic will decrease. Nevertheless, within the job-shop domain as illustrated 
in Table VII, the AHP scheduling heuristic demonstrates a strong measure of "better than 
average" efficiency and may prove more useful than the costly full-enumeration approach. 

8. Discussion and Conclusion 

The redundant-coupled-machines is a modified form of the coupled-machines approach. 
Consider again the case when m=3. We could couple the first two machines together as one unit 
and couple the second two machines together as another unit. We refer to this situation as 
redundant since the second machine is represented in both couplings. The two couplings, 
"Machines 1 and 2" and "Machines 2 and 3" represent the total amount of time that a job will 
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require between both machines listed in the respective title. In this manner, the process is also 
seen as a two-stage process, while the second machine of the three machine process acts as a 
bridge connecting the first and third stages. We note the redundant-coupled-machines approach is 
different from the coupled-machines approach because the middle processes are repeated. 

This alternate proposal suffers from several problems: the approach may bias the model in 
favor of the redundant machine; there is a lack of independence between the two couplings; and 
this approach does not reduce to the m=2 case. Like the (non-redundant) coupled-machines 
approach, this alternate model suffers from the same dead-time problems. Since unutilized time 
is not accounted for, the assumption regarding the amount of time a job will require of a coupled 
unit must hold. The optimal schedule may have dead time, thus this assumption may not hold in 
all situations. Since dead time can only accumulate between machines, there are m-1 possible 
locations for this unaccounted increase in job-time requirement. Hence as m increases, so too 
does the probability that the optimal schedule may incorporate such unaccounted dead time. As 
the number of jobs increases, the number of feasible schedules grows, increasing the likelihood 
that this dead time will occur. Hence, the zero-dead-time assumption becomes more unrealistic 
as the systeni grows in complexity and the overall efficiency of this heuristic should decrease. 

The fundamental difference between the proposed AHP models the other scheduling 
strategies suggested in the literature is that the AHP models are based on the priorities of times 
and machines. In contrast, Johnson's algorithm and most others proposed compare not the 
importance of various aspects of the jobs; rather they compare the cardinality of the jobs relative 
to the times required. The dead-time encountered between machines has reprocussions on the 
entire system. Therefore one must consider such feedback and determine the amount of influence 
it may have. Since the AHP can implement feedback and feedforward in one system in the 
supermatrix, the proposed AHP scheduling model can be advanced by the inclusion of this 
dependency. Hence, prioritization proves applicable in fixed-sequence job shop scheduling and 
since ratio scales can be composed and composition of cardinal scales is sometimes difficult, the 
ease and applicability of the coupled-machine governing hierarchy approach of the AHP may 
prove more beneficial in the future in the field of scheduling than all of the traditional techniques. 
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