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ABSTRACT 
A multiplicative model is proposed for Saaty's method of scaling in paired 

comparisons experiments. Itera:tive schemes are given for the maximum likelihood 
estimation of priority weights for the alternatives under this model that converge 
monotonically to the maximum likelihood estimates.The asymptotic distribution of 
these estimates are obtained and their accuracy evaluated by a Monte Carlo study. 
Finally, numerical examples are used to illustrate the method. 

1. INTRODUCTION 
Given the task of comparing t mutually exclusive alternatives T1, T2, ..., Tt for 

preference, Saaty (1977) has developed a new approach for deriving priority weights 
associated with these alternatives. Instead of mere preference or indifference, he 
introduced quantification of the level of preferences, aggregating over a number of 
judges who compare the alternatives in pairs. 

Each judge in a group provides an observation on a pairwise comparison matrix 
A = (( aij )), where aii is a positive number indicating the intensity of 
preference ( assumed to be on a ratio scale) of alternative Ti over T. 
Based on a multiplicative model of the form 

1rei 
aii = — eii , (1) 

19 
where r and r are parameters denoting priority weights of alternatives Ti and Ti, 
and ç is an appropriately specified error term, Saaty (1980) estimates priorify 
weighis by the principal right eigenvector of the matrix A. He also assumes that the 
matrix A is reciprocal, i.e., ait = Vaii for all i, j. 

Since the appearance of the eigenvalue method in Saaty (1977), various other 
scaling techniques have been proposed by several authors, notably least squares 
(Jensen, 1984) and logarithmic least squares (Rabinowitz, 1976; Saaty, 1980; 
DeGraan, 1980; Fitchner, 1983; De Jong, 1984; Williams and Crawford; 1985). In 
these methods, the multiplicative model is transformed to a log-linear form: 

ln au E-u • = In — + (2) 

where the expected value of In eti is assumed to be zero. In terms of the original 
multiplicative model (1), however, this assumption implies that the expected value of 
ati cannot be xi / irj. This is because the expected value of eti cannot be unity if the 
expected value of rn Ei, is zero (see appendix A). To avoid this anomaly, we work 
with the original multiplicative model (1). 

We develop the multiplicative model directly in section 2 along with some 
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additional assumptions. Although the usual practice is to collect only the entries 
above the diagonal (given the reciprocal matrix where aij =1/aji ), we will consider 
collecting both the entries ajj and ajj for more information and to increase the number 
of observations. Also in that case the estimation problem is invariant to the indexing 
of the items because of the fixed entries in both a.• and ajj. For example, if one 
observes an to be 3, then if some time gap is allowed before observing a21, the 
latter may be observed at some value other than 1/3 even for the same individual. 
This is not surprising given the existence of errors, represented by Eij in equation 
(1). A virtue of the model developed here is that the error contributions are treated 
naturally via maximum likelihood procedures. Moreover, by asking the same 
questions two ways, increased information for estimating the true preference is 
obtained. Of course, the derived scale values will yield a reciprocal matrix. 

In section 3 the maximum likelihood estimates (inles) of the priority weights are 
found using iterative schemes that are shown to be monotonically convergent. These 
estimates synthesize the judgments of the individuals in a particular group. The 
asymptotic distribution of the estimator is obtained and a Monte Carlo study is 
included to evaluate the accuracy of the asymptotic distribution in the same section. 
Numerical examples are presented to illustrate the method in section 4. 

2. THE MATHEMATICAL MODEL 
Consider a paired comparison experiment with t objects, T1, T2, ..., T. Let '4 be 

the priority weight of T1, 0 and Z nj = 1 (ensuring determinacy). For a 
particular Tj and Tj ; i j, the preference of Tj over Tj is given by N independent 
judges. We assume that each individual gives a judgment on just one preference 
problem, requiring a total of Nt(t-1) judges. This procedure guarantees independence 
of observations, but it does entail the implicit assumption that individual differences 
among the judges are unsystematic and can be ignored. Thus, the judge giving the 
score ank is identified not by k alone but by the ordered triplet (i,j,k) of the scripts. 
The fa -Owing multiplicative model is considered: 

• ajjk = — Eijk• (3) 
15 

The score ajjk assigned by the k-th judge to T1 over Ti may be thought of as the 
14 

product of two components . The first, —, is the average preference of Ti over Tj 
75 

in the population to which the k-th judge belongs. The second, ejjk, represents the 
deviation of the k-th judge from this average preference. Only one set of scale 
values 74, nt will be derived to represent the population of the judges leaving the 
systematic individual differences to the error values eijk. In the model (3) ejjks are 
assumed to be independent and do not depend on iris. 

74 
It is desirable that the expected value of ajjk, E [ajjk ] be —. Hence we assume 

It' 

that E [e-k 11 = L We assume erJks to be identically distributed as Gamma (r,r) since 
these are positive random variables and the choice of the Gamma distribution for 
judgment matrices have been shown to be appropriate by Vargas (1982). One can 
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use this assumption if the data fit the Gamma (r, r) distribution. r is treated as a 
parameter and is estimated jointly with the parameters it = (rci, 7c2, J). In section 
3 we observe that the estimation of priority weights ni, , ict does not depend 
on r. On the other hand, the estimate of r depends on the priority weights. The mles 
of 7c1, , r t derived in section 3 can l?e used to obtain the mle of r as a solution 
to the following equation: 

1 7C' 
v(r) —In(r) = 1 + — [S Ebijk—Z— auk ] (4) 

NT i=j k i=j itik 

where biik = In auk, T = t(t-1), v(r) = digarnma function = 

( See appendix B). 
For the rest of the paper we assume that euks are independently distributed as 
Gamma (r, r), where r is obtained from (4). 

lti 
Next , we test the validity of the model (3) by the null hypothesis Ho : iti; = —; t 7Ci 7C' 
against the general alternative hypothesis H: xi; — for some i, j for the general 
model aiik = icii Eijk . n• 

Denoting X as the likelihood ratio statistic, —2In X given by 
auk N auk pi 

—2r E S — — 2 N r E ln pii + 2r I 
k=1 i=j Pij i#j k=1 i=j pi 

has the x2 distribution, for large N with (t-1)(t-2)/2 df under Ho where pi 
represents mle of it under the restriction p1 + + pt = 1 and pu represents mle for 
itjj . In the event the model (3) is accepted, the priority weights in that model are 
es ' ated. 

d lnc(r) 

dr • 

3. ESTIMATION OF THE PRIORITY WEIGHTS 
The priority weights of the elements are estimated in this section. The logarithm of 
the likelihood function In L (it) apart from an additive constant is 

—SE r auk — (5) 
k=1 i=j 7C' 1 

The mile p of it is obtained as solution to the following system of equations subject 
to the constraint E iti = 1. 

1 

[gi(p) _ Si] = 0 

N 1 
where g(p) = pi2 ES auk pi and Si = E S ajik — 

k=1 j=i k=1 pi 

(6) 
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We can readily see that L (fc) is positive in the region (7ti > 0; Z 7q=1) .The 
existence of the maximum is established by the fact that defining L (7c) for it on the 
boundary gives continuous extension of L(7t) to the closed region (74 0; Th4=1). 
Adapting the technique of Ford [1957] and subsequently of Davidson [1970], we 
give the proposed iterative schemes for obtaining solutions to the previous equations 
in the following. 

Each stage of the iteration is indexed by K, K=1,2,... . For each value of K, a 
revised value of each N is obtained. A stage is sub-divided into sub-stages indexed 
by n; n = (K-1)s ..... Ks-1. For each sub-stage, a new estimate p of it is obtained 
through change of one element of p at a time. The (n+1)-th sub-stage value p(n+1) 
is obtained from the n-th sub-stage value p(n) through replacement only of the 
element pi(n) for which i = n - (K-1)s+ 1. Finally, the iterative scheme is given as 
follows. 

[pi(n+1)] 4 (1)(11)) (7) 
s1(n) 

From the iterative scheme, it is clear that one gets final estimates positive, if 
one starts with positive initial estimates. As initial estimates, one may use N(0= l/t ; 
i=1,2,..., t.We show in Appendix C that solutions to the iterative scheme given in 
(7) converge monotonically to the solution of (6). 

Using large sample theory, it can be shown that [4N (P1 - n1), ..., 4N (Pt - 7c011
has singular normal distribution of dimensionality (t —1) in a space oft dimensions with 
mean vector zero and disperson matrix Z, which is given by 

where 

( 

E = 

b' 

2Nr(t —1) 2Nr(t —1) 2Nr 
Cu =  

242 

Ii 

Goo 

nt2 7I•TC 
1 I 

2Nr(t-1) 2Nr 2Nr 
  + — + 

nt2 Itint /tint 
t-1 

1= 1, 2, ..., t-1, 

2Nr 

icgri 
j = 1, 2, ..., t -1 ; h&j 

= (b1,..., bt _i) where bt = — Z ati ; i=1,2,...,t -1 and ao.= 

The proof of the above is sketched in Appendix D. 

(8) 

t-1 t-1 
Z ij• 

i=1 j=1 

An approximate confidence interval for lEi; i=1,2,...,t, a confidence region for 
any subset of s distinct parameters of the set, s < t and a confidence interval for 
In 7Ci i =1,2,...,t can be obtained using the distribution given by (8). 
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It only remains to be checked how large N and t must be for the approximation to 
be satisfactory. For this purpese, we simulate N pairwise comparison matrices A, 
whose (i, j)th entry au is obtained through (3) starting with a known vector it and 
assuming that eus are distributed as Gamma (r, r) distribution with r estimated 
through (4). The estimate p of it is obtained from these N generated matrices. This 
process is carried out n times yieldingin estimates p(1), p(2) , , p(n). Based on 
these, the normality of the estimate is tested using a test criterion given by Bera 
and John (1983). The test criterion is 

C = n 
i 1 

Ti2/6, 
= 

n [yi0)] 3
where Ti = 

j=1 n 

y(i) = R ( p(i) —p), 

yia) is the i-th component of the vector VD, 13 is the vector of the sample means of 
the estimate vectors p(i), p (2) p(n) and 

R = (1/4X013113 + (1/1/X2)P21/2+ + (1242t,t_OPt_iP't_i 

Here, X' s are the eigenvalues and P's are the corresponding eigenvectors of S, 
the sample covariance matrix of p0) s. The test criterion C has asymptotically the x 2
distribution with t di under Ho. 

We carried out this simulation process fort = 3, 4, 10 and N = 3, 5, 10 and 20 
for each value of t . Throughout the study we used n = 1000 . We summarise the 
simulation result in Table 1. For t = 3, 4, 10, the fixed vector it was chosen 
respectively as follows: 

TC = (0.2, 0.3, 0.5) 
TC = (0.1, 0.4, 0.3, 0.2) 
it = (0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.15, 0.15, 0.15, 0.1) 

Insert Table 1 about here 

Comparing these values with the corresponding critical values, it can be seen that 
for the values t and N as small as 3, the asymptotic property holds well. 

4. NUMERICAL EXAMPLES 
In this section, we present hypothetical data on the first level of the school 

selection example given in Saaty (1980) to illustrate the method developed above. 
Seven independent observations for each of the thirty pairs of six criteria — 
Learning(L), Friends(F), School life(S), Vocational training(V), College 
preparation(C), Music classes(M), were collected from judges of similar background 
in an hypothetical experiment. The data are recorded in Table 2. For example, the 
fourth observation on the pair (L,F) is 1.5 which means that L is preferred 1.5 times 
F by the fourth judge. 
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Insert table 2 about here 

The iterative scheme (7) converged at the fourth iteration yielding the estimate as: 
( 0.29, 0.16, 0.05, 0.13, 0.22, 0.15) 

whereas the estimate of De Jong(1984) turns out to be 
( 0.33, 0.15, 0.05, 0.14, 0.19, 0.14). 

We have constructed the hypothetical data in table 2 as random fluctuations 
around the example given in Saaty (1980) collected from a single individual. We 
observe that the estimates not only maintain the same ranking of the priority 
weights, the values are also very close to the solution of Saaty's Eigenvalue method. 

The estimated asymptotic dispersion matrix of p (obtained from (8) ) is given by: 

0.00287 - 0.00089 - 0.00011 - 0.00051 - 0.00101 - 0.00035' 
- 0.00089 0.00117 0.00001 - 0.00005 - 0.00018 - 0.00006 
-0.00011 0.00001 0.00006 0.00002 0.00001 0.00001 
- 0.00051 - 0.00005 0.00002 0.00062 - 0.00007 0.00001 
-0.00101 -0.00018 0.00001 -0.00007 0.00141 -0.00016 
- 0.00035 - 0.00006 0.00001 0.00001 - 0.00016 0.00023 

Next, we consider a similar data set but with larger variance to show how the bias 
increases significantly in log-linear form. These data are recorded in table 3. The 
interpretation is similar to that of table 2. 

Insert table 3 about here 

The iterative scheme converged at the sixth iteration with the estimate as: 
( 0.29, 0.15, 0.05, 0.14, 0.21, 0.16) 

whereas the estimate of De Jong(1984) is given by 
( 0.32, 0.15, 0.04,0.12, 0.17, 0.20) 

We observe that the estimates obtained in our method maintain the same ranking of 
the priority weights and the values are also very close to the solution of Saaty's 
Eigenvalue method. However, in De Jong's method the ranks of the fifth and sixth 
object are reversed. 

5. CONCLUDING REMARKS 
In this paper we concentrate our attention on estimates of priority weights with 

respect to a fixed criterion. However, the procedure could be easily extended to the 
situation of more than one criterion in the analytic hierarchy process set up. 

For each of the t(t-1) questions of preference, N independent observations are 
obtained from N different judges. Only one set of scale values is derived to represent 
a group of judges - disregarding the individual differences among members of that 
group. We assume that a particular group is homogeneous and obtain what the 
individuals are offering as a group. It has been pointed out that it may be 
inconvenient to use several judges. From a practical stand point this is not a serious 
problem as we find from the Monte Carlo study that with three alternatives, as few 
as three judges for each of the six pairs would be sufficient 
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o 0 
Once a set of scale values is derived we obtain a reciprocal matrix rather than 

o forcing the reciprocity before the model's application. Collection of all off-diagonal 

O entries does not violate the rationality of making comparisons. It merely increases the 
information regarding the true preferences by asking the same question in two o different ways. o 
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O APPENDIX A 
Lemma:o  If lnX is distributed as Normal with expected value zero and variance a 2

o then E(X) cannot be I. Conversely, if E(X) is 1 then the expected value of lnX can 
not be zero. 

0 
0 

O

Proof: If lnX is distributed as Normal with expected value zero and variance a2, 
then X is said to be log-normally distributed. In that case, 

E(X) = exp (a2 /2) . 
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Therefore, E(X) = 1 implies a2 = 0 which is impossible. 
Again E(X) = 1 implies exp (g + a 2 /2) = 1 where g is the expected value of InX. It 
follows that g = — a2 /2 which is never zero. This completes the proof. 

Remark : In general, E(InX) < In E(X) since the function "—In" is a convex function. 
Therefore, E(1nX) < 0 whenever E(X) is 1. 

APPENDIX B 
Lemma  : The maximum likelihood estimate of r is obtained as solution to the equation: 

1 lti 
v(r) —1n(r) = 1 + — [Z E bijk — E — E aijk I (Al) 

NT i#j k i#j 7Ci k 
d InF(r) 

where bijk = In aijk, T = t(t-1) and v(r) = digamma function = 
dr 

0 

9 

Proof: In the model (3), eiik is assumed to have Gamma (r, r) distribution. The 
probability density of wijk =-1n (r. eijk) is then given by 0 

0 

wijk ) 

Wijk Wijk 
— e 

F(r) 

The logarithm of the likelihood function, lnL, after some simplifications reduces to: 

79 
NT. r. in(r) + r E E bijk — r E — aijk — NT F (r) 

i#j k k 
Differentiating the above expression with respect to r, one obtains 

&lnL 19 
NT.1n(r) + NT + bijk — — aijk — NT W (r) a r k k 

Setting this derivative equal to zero and dividing both sides by NT, (Al) is obtained. 

APPENDIX C 
Lemma : In L is increased at a substage if and only if the estimated value at that 
substage is changed. 

Proof: Let D.—_in LI denotes the value of ann L when It is replaced by p(n) . 
ni I n a • 

Let a In L I denotes the value of a in L when it is replaced by p(n) 
a 7ct In 

0 
a 

0 

0 

Q 
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It follows from (6) and (7) that 

gi(p(n rn.(014 . 0(n) ) a lnL I 1 
I irt 

aiti In [pi01)]4 4 

0 

[pi(n+1)3 4. .s1 —[P1 
[Pi (ni 4. si(n) 1 

{pi(n)i4 

Si(n) • Api • [pi(n+I) pi(n)] up1(n+1))2+(p1(n))21 

DIU, 
where Api = pi(n+1) _ pi, (n) \ so that Api has the same sign as — . Again using 

ani n 
alnl, , 1 

(6) and (7) one obtains —   { gi(p(n+1)) _ [p1(n+1)14. s i(n)} 
ani 

[pi (n)]4 

n+1 [pi(n+l)]t 

1 (n+1) (n) 

[pi(n+1)14( ) gi(1° ) 

which is of the same sign as Api since gi(p) is monotone increasing 
alriL 

Now, zi — is monotone decreasing in zi which follows from the result that 
_ arci 

a lnL 

alti
± El. 

in Pi, 

N 
Z Z aijk9 

a21nL j=i k=1 N 
.   1 

Z Z ajik —
 

CO. 
?lip 7q 2 j#i k=1 Tri 

Therefore,   has the same sign for all ni between pi(n) and pi( 1+1). Thus, the 
dig 

change in the likelihood 

AlnL = Api 0, 

equality is achieved if and only if Api =0. 
0 aln.L. alnI2 
(7) denotes — at p(n) + e Api 4, where, Ii = ( 0, 0 ..... 1,0,..., 0) 
0 agi e azi 

0 
0 
0 

0 

0 
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0 
0 
0 

1 being at the ith position. 0 < e < 1. 

In the above steps, it is proved that likelihood is increased at every substage if 
and only if the corresponding parameter value is changed, which guarantees the 
monotone convergence to the maximum likelihood estimate. 

APPENDIX D 
We find the expressions for C and Cii of (8). Let In L be as in (5). 

a 2.1n L, 
Cii = E {  a zi2 

2Nr(t-1) 2Nr(t -1) 2Nr 

zt2 71.7t 
1 t 

in 
since E (a-) = -. lj • n. 

a 21n L 
and Cf.' = E [   ] 

a 9 a ni 

2Nr(t-1) 2Nr 2Nr 2Nr  
=  + +   using E (aii) = —

zi
. 

zt2 zizt zjzt zinj nj 
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Table 1 Computed value of C for t =3, 4, 10 and N=3, 5, 10, 20 

3 5 10 20 

3 .1467 .1015 .0146 .0034 
4 .1005 .0234 .0158 .0017 
10 .0589 .0192 .0035 .0009 

0 
0 
0 

0 
0 
0 
0 
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Table 2. Comparisons Data of six criteria with respect to overall 
satisfaction with school; N = 7. 

Observations 
Pairs 

1 2 3 4 5 6 7 

(L,F) 4 3 2 1.5 4.5 4 4.5 
(L,S) 3 2.5 2 3.2 2 2.5 3.4 
(L,V) 1 1.5 0.5 1 0.5 2 1 
(L,C) 3 2.5 4 3.5 3 3.5 2.5 

O (L,M) 4 3 3.5 3 4.5 4 5.5 
(F,S) 6 5.5 8 4.5 7.5 7 6.5 
(F,V) 3 2.5 3 4 3.5 2 2.5 
(F,C) 0.2 0.25 0.33 0.2 0.17 0.2 0.25 
(F,M) 1 1.5 1 2 1.5 0.5 2 
(S,V) 0.2 0.25 0.2 • 0.25 0.33 0.2 0.25 
(S,C) 0.17 0.25 0.20 0.33 0.5 0.2 0.33 
(S,M) 0.2 0.25 0.33 0.25 0.15 0.2 0.33 

0 (V,C) . 1 0.5 2 0.5 1 1.5 2 
(V,M) 0.33 0.5 0.5 0.33 0.5 1 0.5 
(C,M) 3 2 2.5 3.5 3 2 3.5 
(F,L) 0.2 0.25 0.5 0.5 0.67 0.33 0.25 

0 (S,L) 0.5 0.33 0.5 0.33 0.33 0.5 0.33 
(S,F) 0.2 0.25 0.33 0.2 0.17 0.17 0.17 
(V,L) 0.5 0.5 3 0.5 2 0.5 0.5 

0 (V,F) 
(V,S) 

0.5 
4 

0.33 
3 

0.5 
4 

0.2 
4 

0.25 
3 

0.5 
4 

0.33 
3 

(C,L) 0.5 0.33 0.25 0.33 0.5 0.33 0.5 
(C,F) 4 3 2 4 5 5 3 

0 (C,S) 5 3 5 2 3 4 3 
0 (C,V) 1 2 0.5 3 0.5 0.5 0.33 

(M,L) 0.2 0.5 0.25 0.25 0.25 10.5 0.33 
0 (M,F) 

(M,S) 
1 
4 

0.5 
3 

0.5 
4 

0.33 
3 

0.5 
5 

3 
4 

0.33 
3 

(M,V) 4 3 2 4 3 1 3 
(M,C) 0.33 0.33 0.5 0.25 0.33 0.5 0.25 

0 
0 

0 

0 
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Table 3. The second set of comparisons data of six criteria with respect 
to overall satisfaction with school; N =7. 

0 

0 
Observations 

Pairs 
1 2 3 4 5 6 7 C) 

0 
(L,F) 4 6 8 3 2 1 1.5 0 
(L,S) 3 5 7 2 1 1.5 4.5 0 
(L,V) 1 0.5 0.5 1 2 1 1 0 
(L,C) 3 2 1 2.5 5 6 3.5 0 
(L,M) 
(F,S) 

4 
7 

6 
7.5 

7 
8 

3 
5 

2 
4 

2.5 
3 

3.5 
6 0 

(F,V) 3 5 6 2 1.5 2 3.5 0 
(F,C) 0.2 0.4 0.6 0.1 0.15 0.2 0.2 0 
(F,M) 1 1 0.5 2 0.5 2 1 0 
(S,V) 0.2 0.4 0.6 0.1 0.15 0.25 0.2 0 (s,C) 0.2 0.6 0.4 0.1 0.2 0.25 0.15 0 (S,M) 
(V,C) 

0.17 
1 

0.34 
0.5 

0.17 
2 

0.25 
1 

0.10 
1 

0.08 
2 

0.1 
0.5 0 

(V,M) 0.33 0.5 0.5 0.2 0.25 0.3 0.33 0 
(C,M) 3 5 6 2 1 1.5 2 0 
(F,L) 0.2 0.2 0.5 0.67 0.67 0.33 0.25 0 
(S,L) 0.5 0.25 0.5 0.2 0.5 0.5 0.33 4-...) 
(S ,F) 
(V,L) 

0.2 
0.5 

0.25 
4 

0.33 
3 

0.2 
0.5 

0.5 
2 

0.5 
0.33 

0.5 
0.25 0 

(V,F) 0.5 0.25 0.5 0.25 0:5 0.5 0.33 C 
(V,S) 4 2 4 1 3 5 3 0 
(C,L) 0.5 0.25 0.2 0.33 0.5 1 0.5 0 
(C,F) 4 1 1 4 6 5 3 0 (C,S) 
(C,V) 

5 
1 

1 
3 

6 
0.33 

1 
3 

3 
0.25 

4 
0.5 

3 
0.33 0 

(M,L) 0.2 0.5 1 0.2 0.25 1 0.33 0 
(M,F) 1- 2 0.5 0.17 0.5 3 0.33 0 
(M,S) 4 9 1 3 6 4 3 0 
(M,V) 1 3 2 6 3 1 3 C.) 
(M,C) 0.33 1 0.17 0.25 0.33 0.5 0.25 0 

0 

0 

0 
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