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ABSTRACT
A multiplicative model is proposed for Saaty's method of scaling in paired
comparisons experiments. Iterative schemes are given for the maximum likelihood
estimation of priority weights for the alternatives under this model that converge
monotonically to the maximum likelihood estimates.The asymptotic distribution of
these estimates are obtained and their accuracy evaluated by a Monte Carlo study.
Finally, numerical examples are used to illustrate the method.

1. INTRODUCTION
Given the task of comparing t mutually exclusive alternatives Ty, Ty, ..., T; for

preference, Saaty (1977) has developed a new approach for deriving priority weights
associated with these alternatives. Instead of mere preference or indifference, he
introduced quantification of the level of preferences, aggregating over a number of
judges who compare the alternatives in pairs.

Each judge in a group provides an observation on a pairwise comparison matrix

= (( ajj )), where aj; is a posmvc number indicating the intensity of
preference ( assumed to‘!)e on aratio scale ) of alternative T; over Tj.

Based on a multiplicative model of the form
T

a3 = — Eji, 1

IJ ]'Cj IJ ( )
where 7; and w; are parameters denoting priority weights of alternatives Tj and Tj,
and &j; 1s an appropriately specified error term, Saaty (1980) estimates priorify
weights by the principal right eigenvector of the matrix A. He also assumes that the
matrix A is reciprocal, i.e., aj; = 1/ajj for all i, j.

Since the appearance of 'lhe elgcnvalue method in Saaty (1977), various other
scaling techniques have been proposed by several authors, notably least squares
(Jensen, 1984) and logarithmic least squares (Rabinowitz, 1976; Saaty, 1980;
DeGraan, 1980; Fitchner, 1983; De Jong, 1984; Williams and Crawford; 1985). In
these methods, the multiplicative model is transformed to a log-linear form :

In ajj =In 7y — In 7 + In gj5, ‘ (2)

where the expected value of In g;; is assumed to be zero. In terms of the original
multiplicative modet (1), however, this assumption implies that the expected value of
aj; cannot be m; / w;. This is because the expected value of £;; cannot be unity if the
expected value of fn g;; is zero (see appendix A). To avoidthis anomaly, we work
with the original mulnp icative model (1).

We develop the multiplicative model directly in section 2 along with some
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additional assumptions. Although the usual practice is to collect only the entries
above the diagonal (given the reciprocal matrix where a;; =1/a;; ), we will consider
collecting both the entries aj; and aj; for more informatior and to'increase the number
of observations. Also in that case the estimation problem is invariant to the indexing
of the items because of the fixed entries in both aj; and aj;. For example, if one
observes 2y, to be 3, then if some time gap is allowed beTore observing a;q, the
latter may be observed at some value other than 1/3 even for the same individual.
This is not surprising given the existence of errors, represented by €;; in equation
(1). A virtue of the model developed here is that the error contributions are treated
naturally via maximum likelihood procedures. Moreover, by asking the same
questions two ways, increased information for estimating the true preference is
obtained. Of course, the derived scale values will yield a reciprocal matrix.

In section 3 the maximum likelihood estimates (mles) of the priority weights are
found using iterative schemes that are shown to be monotonically convergent. These
estimates synthesize the judgments of the individuals in a particular group. The

asymptotic distribution of the estimator is obtained and a Monte Carlo study is.

included to evaluate the accuracy of the asymptotic distribution in the same section.
Numerical examples are presented to illustrate the method in section 4.

2. THE MATHEMATICAL MODEL

Consider a paired comparison experiment with t objects, Ty, Ty, ..., T;. Let j be
the priority weight of T;, ®; 2 0 and X & = 1 (ensuring determinacy). For a
particular Tj and Tj ; 1# ], the preference of Tj over Tj is given by N independent
judges. We assume that each individual gives a judginent on just one preference
problem, requiring a total of Nt(t-1) judges. This procedure guarantees independence
of observations, but it does entail the implicit assurnption that individual differences
among the judges are unsystematic and can be ignored. Thus, the judge giving the
score Z;irik is identified not by k alone but by the ordered triplet (i,j,k) of the scripts.

The following multiplicative model is considered :
T
%k = — Ejjk- )
T
The score ajjx assigned by the k-th judge to Tj over Tj may be thought of as the
: -

product of two components . The first, —, is the average preference of Tj over Tj
-

J
in the population to which the k-th judge belongs. The second, Eijk, represents the
deviation of the k-th judge from this average preference. Only one set of scale
values wy, ..., Ty will be derived to represent the population of the judges leaving the
systematic individual differences to the error values gjjk. In the model (3) gjjks are
assumed to be independent and do not depend on x;s.

LSt
It is desirable that the expected value of ajji, E [ajjk ] be —. Hence we assume

=

]
that E [gjjk ] = 1. We assume €jjis to be identically distributed as Gamma (x,r) since

these are’ positive random variables and the choice of the Gamma distribution for
judgment matrices have been shown to be appropriate by Vargas (1982). One can
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use this assumption if the data fit the Gamma (r, r) distribution. r is treated asa
parameter and is éstimated jointly with the parameters 7 = (%}, Ty, .. ,%). In section
3 we observe that the estimation of priority weights 71, 7y, ..., Xy does not depend
onr . On the other hand, the estimate of r depends on the priority weights. The mles

of Ty, Ty, ... , T derived in section 3 can be used to obtain the mle of r as a solution
to the following equation : !
e
YO -In@) =1+ — [T Sbj—= — Lajjx] @)
NT i# k i# Tk
dIal'(®)

where bijk =In ajjk T = t(t-1), W(r) = digamma function = p” .
( See appendix B ). '
For the rest of the paper we assume that g;jks are independently distributed as

Gamma (r, 1), where r is obtained from (4). o
i
Next , we test the validity of the moc%el (3) by the null hypothesis Hy : mjj = p— ;
. ¢ 1 j
against the general alternative hypothesis H : mj; #— for some i, ] for the general
model ajjk = jj Ejjk - ]
Denoting A as the likelihood ratio statistic, —2In A given by

N ajik N 3jik D;
—r £ £ - —2Nr ZThpj+2x X 5 :
k=1 i#j Pij i k=1 i

Pi .
has the ¥? distribution, for large N with (t-1)(t-2)/2 df under Hy where pj - -
represents mle of 7j under the restriction py + ... + pt = 1 and pjj represents mile for o
ni%'u.nln the event the model (3) is accepted, the priority weiglits in that model are
estimated. .

A

3. ESTIMATION OF THE PRIORITY WEIGHTS
The priority weights of the elements are estimated in this section. The logarithm of

the likelihood function In L (x) apart from an additive constant is

N o
k=1i# et

The mle p of & is obtained as solution to the following system of equations subject
to the constraint X mj = 1.

1
— [gi(p) - pi* Si1 =0 ©)
pit
N N 1
where gi(p) =pi? £ Zajkpjand Sj= = Zajik—.
i k=1 j# k=1" pj
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We can readily see that L (x) is positive in the region {n; > 0; Z mj=1}.The
existence of the maximum is established by the fact that defining L () for © on the
boundary gives continuous extension of L(r) to the closed region {mj = 0; Zm;=1}.
Adapting the technique of Ford [1957] and subsequently of Davidson [1970], we
give the proposed iterative schemes for obtaining solutions to the previous equations
in the following.

Each stage of the iteration is indexed by K, K=1,2,... . For each value of K, a
revised value of each pj is obtained. A stage is sub-divided into sub-stages indexed
by n; n = (X-1)s,..., Ks-1. For each sub-stage, a new estimate p of & is obtained
through change of one element of p ata time. The (n+1)-th sub-stage value p(+1)
is obtained from the n-th sub-stage value p() through replacement only of the
element Pi(") for which i = n - (K-1)s+ 1. Finally, the iterative scheme is given as

follows.
g (™)

7

Si(ﬂ) 0
From the iterative scheme, it is clear that one gets final estimates positive, if
one starts with positive initial estimates. As initial estimates, one may use Pi(0)= 14;
i=1,2,..., t.We show in Appendix C that solutions to the iterative scheme given in

(7) converge monotonically to the solution of (6). ,
Using large sample theory, it can be shown that [VN P1 - ®1)s s VN (pt - Tl

@]’ =

has singular normal distribution of dimensionality (t—1) in a space of t dimensions with

mean vector zero and disperson matrix Z, which is given by

) b

b' Coo
where Zj = (( 03)) = ((Cyj )L,
2Nr(t -1) 2Nr(t—-1) 2Nr

i = + + . i=1,2, ., t=1,
mi? ny? T
2Nr(t-1) 2Nr 2Nr 2Nr
Cij = + + - ;1L,j=1,2,.,t-1; i#j
T2 Ty M T
, -1 t-1 t-1
b = (by,..., by .1) where bj=— X Oij i=1,2,..,t-land G,p= X Z Gij-
j=1 i=1j=1

The proof of the above is sketched in Appendix D.

An approximate confidence interval for mj; i=1,2,...,t, a confidence region for
any subset of s distinct parameters of the set, s <t and a confidence interval for
Inw;; i=1,2,..,t can be obtained using the distribution given by (8).
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It only remains to be checked how large N and t must be for the approximation to
be sdtisfactory. For this purpose, we simulate N pairwise comparison matrices A,
whose (i, j)th entry aj; is obtained through (3) starting with a known vector & and
assuming that g;;s aré distributed as Gamma (r, r) distribution with r estimated
through (4). The estimate p of & is obtained from these N generated matrices. This
process is carried out n times yieldingn estimates p(1), p(2) , ..., p(t). Based on
these, the normality of the estimate is tested using a test criterion given by Bera
and John (1983). The test criterion is

_ 2
C=n iél T.1 /6.,
n [y3

where Tj=Z ,
) =1 n

y(i) =R.(p(j) —“1:)),

yi(j) is the i-th component of the vector.y(@), -1; is the vector of the sample means of
the estimate vectors p(1), p(2), ..., p(0)" and

R= (1/‘1}\.1)]?1}?’1 + (l/dlz)Pzp'z'!' e F (17‘/7Lt_1)Pt.1P't.1 .

Here, A's are the eigenvalues and P's are the corresponding eigenvectors of S,
the sample covariance matrix of p(]) s. The test criterion C has asymptotically the 2
distribution with t d.f. under Hy,.

We carried out this simulation process fort =3, 4, 10 and N =3, 5, 10 and 20
for each value of t . Throughout the study we used n = 1000 . We summarise the
simulation result in Table 1. For t =3, 4, 10, the fixed vector ® was chosen
respectively as follows :

= (0.2, 0.3, 0.5)
= (0.1, 0.4, 0.3, 0.2)
r = (0.1, 0.1, 0.1, 0.05, 0.05, 0.05, 0.15, 0.15, 0.15, 0.1)

Insert Table 1 about here

Comparing these values with the corresponding critical values, it can be seen that
for the values t and N as small as 3, the asymptotic property holds well.

4, NUMERICAL EXAMPLES

In this section, we present hypothetical data on the first level of the school
selection example given in Saaty (1980) to illustrate the method developed above.
Seven independent observations for each of the thirty pairs of six criteria —
Learning(L), Friends(F), School life(S), Vocational training(V), College
preparation(C), Music classes(M), were collected from judges of similar background
in an hypothetical experiment. The data are recorded in Table 2. For example, the
fourth observation on the pair (L,F) is 1.5 which means that L is preferred 1.5 times
F by the fourth judge.
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Insert table 2 about here

The iterative scheme (7) converged at the fourth iteration yielding the estimate as :
(0.29, 0.16, 0.05, 0.13, 0.22, 0.15 )

whereas the estimate of De Jong(1984) turns out to be
(0.33, 0.15, 0.05, 0.14, 0.19, 0.14 ).

We have constructed the hypothetical data in table 2 as random fluctuations
around. the example given in Saaty (1980) collected from a single individual. We
observe that the estimates not only maintain the same ranking of the priority
weights, the values are also very close to the solution of Saaty's Eigenvalue method.

The estimated asymptotic dispersion matrix of p (obtained from (8) ) is given by :

N
(0.00287 - 0.00089 - 0.00011 — 0.00051 - 0.00101 - 0.00035
—0.00089 0.00117  0.00001 - 0.00005 - 0.00018 — 0.00006
—0.00011 0.00001  0.00006 0.00002  0.00001 0.00001
-0.00051 -0.00005 0.00002 0.00062 - 0.00007 0.00001
-0.00101 -0.00018 0.00001 -0.00007  0.00141 — 0.00016
- 0.00035  -0.00006 0.00001 0.00001 -~0.00016 0.00023

Next, we consider a similar data set but with larger variance to show how the bias
increases significantly in log-linear form. These data are recorded in table 3. The
interpretation is similar to that of table 2.

Insert table 3 about here

The iterative scheme converged at the sixth iteration with the estimate as :

(0.29, 0.15, 0.05, 0.14, 0.21, 0.16 )
whereas the estimate of De Jong(1984) is given by

(0.32, 0.15, 0.04, 0.12, 0.17, 0.20)
We observe that the estimates obtained in our method maintain the same ranking of
the priority weights and the values are also very close to thé solution of Saaty's
Eigenvalue method. However, in De Jong's method the ranks of the fifth and sixth
object are reversed.

5. CONCLUDING REMARKS

In this paper we concentrate our attention on estimates of priority weights with
respect to a fixed criterion. However, the procedure could be easily extended to the
situation of more than one criterion in the analytic hierarchy process set up.

For each of the t(t-1) questions of preference, N independent observations are
obtained from N different judges. Only one set of scale values is derived to represent
a group of judges - disregarding the individual differences among members of that
group. We assume that a particular group is homogeneous and obtain what the
individuals are offering as a group. It has been pointed out that it may be
inconvenient to use several judges. From a practical stand point this is not a serious
problem as we find from the Monte Carlo study that with three alternatives, as few
as three judges for each of the six pairs would be sufficient.
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Once a set of scale values is derived we obtain a reciprocal matrix rather than
forcing the reciprocity before the model's application. Collection of all off-diagonal
entries does not violate the rationality of making comparisons. It merely increases the
information regarding the true preferences by asking the same question in two
different ways. .
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APPENDIX A
Lemma : If InX is distributed as Normal with expected value zero and variance 2
then E(X) cannot be 1. Conversely, if E(X) is 1 then the expected value of InX can
not be zero.

Proof : If InX is distributed as Normal with expected value zero and variance ¢2,
then X is said to be log-normally disaibuted. In that case,
E(X) =exp (62 /2).
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Therefore, E(X) = 1 implies 62 =0 whmh is impossible.
Again E(X)=1 1mphcs exp (1L + 02 /2) = 1 where L is the expected value of InX. It
follows that [t = — 62 /2 which is never zero. This completes the proof.

Remark : In gencral, E(InX) < In E(X) since the function "—In" is a convex function.
Therefore, E(InX) < 0 whenever E(X) is 1.

APPENDIX B
Lemma : The maximum likelihood estimate of r is obtained as solution to the equation :
1
Y@ —In@) =1+ — [X Zka Z—Zaljk] (Al)
NT i# k i ®
d Inl'()
where byjk = In ajjk, T = 1(t-1) and y(r) = digamma function = P

Proof : In the model (3), €jik is assumed to have Gamma (r, r) distribution. The
probability density of Wijk = '&n (r. eljk) is then given by

I Wik Wik
€ i 1

) = I'(r)

The logarithm of the likelihood function, InL,, after some simplifications reduces to :

i# k i#) ® ok
Differentiating the above expression with respect tor, one obtains

dlnL
or i k i<j ® x

= NTIn(@) +NT+2XZ Zbjx ~Z —Zalk NT ¥ ()

Setting this derivative equal to zero and dividing both sides by NT, (A1) is obtained.

APPENDIX C

Lemma : In L is increased at a substage if and only if the estimated value at that

substage is changed.

Proof : Let %I denotes the value of BL when 7 is replaced by p(n)
iln onj

Let alg L | denotes the value of alL when = is replaced by p(m) .
i In T
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1t follows from (6) and (7) that

dmL | 1
om; I [p{™

{ gi(P(n)) - [Pi(n)]4 . Sgn) }
4

1 1
- Dy s _pp, 4 s

pi (0}
Si® + Ap; - [pi®+1) + pi(M] [+ D)2+ (pi )y
) [ps(4
' JlnL.
where Ap; = p;(@*+1) — p;(0) 5o that Ap; has the same sign as -a—- . Again using
m; [n
olnL. . 1
(6) and (7) one obtains = { g(p(n+1)y - [p;(n+1)4, 5;(n)y
am Ige1 [py(m+D} -
1 - (a+]) )
= {ge J)-gbk )}
pi(n+1)p4
which is of the same sign as Ap; since gij(p) is monotone increasing in pj.
dlnL
Now, mj > is monotone decreasing in w; which follows from the result that
-
i . N
T Ak
JlnL L g kel O3 N )
M . = - - X Z gixg— <0.
on; onj2 2 k=l
olnL
Therefore, has the same sign for all ©r; between pi(n) and pi(n"‘l). Thus, the
-
change in the lillcelihood
dlnL 0
AlnL=Ap; —— | =20,
ol o |e
equality is achieved if and only if Ap; = 0.
JlnL dlnL
—_— denotes at p(n) + € Apj I, where, §j = (0,0,.,1,0,..,0)
omy g am;
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1 being at the ith position. 0 <e < 1.

In the above steps, it is proved that likelihood is increased at every substage if
and only if the corresponding parameter value is changed, which guarantees the
monotone convergence to the maximum likelihood estimate.

APPENDIX D
We find the expressions for Cj; and Cyj of (8). Let In L be as in (5).
d2nL
Cu =Ef[-—
i =Bl d ;2 :
2Nr(t-1)  2Nr(t-1) 2Nr &
= + + since E (ajj) =—-.
dZlnL
and Cj =E[- ]
d7j 0 Iy
2Nr(t-1) 2Nr 2Nr 2Nr T
= + + - using E (aj) =—.
T2 Ty L S "
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Table 1 Computed value of C for t=3,4. 10 and N=3.5, 10, 20

N
t 3 5 10 20
3 1467 1015 0146 .0034
4 .1005 0234 0158 .0017
10 .0589 0192 0035 .0009
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=7.

Table 3. The second set of comparisons data of six criteria with respect
to overall satisfaction with school ; N

Observations
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