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ABSTRACT
.

The essence of AHP is to evaluate objects iis terms of the cigen yeetor of the comparison- matrix. Bt when
the number of objects. . as too farge, it canses often warse reliability for an observer to evaloate al} aited
comparizons at i tme. So s necessany to decompose the whole set of pairs mio <everad classes, and for vl
class Lo be evaliated by one observer We propose the decampositeen by BIBD (halaucal incomplete block design)
well known in the ficld of experimental dessyn or combugatories We show by simulation experiments that e
method gives better evaluations than the erdmary AP

In conmection with these, we propose the togarithmic Jeast square method, very casy to caleslate, and show
that this gives very good approximation to the cigen veclor method when # is vather small, and that the former
completely coincides with the Litter when # £ 3, surprisigly

§1 Introduction

The essence of AIIP (Analitic Wicravchy Process} is 1o cvaluale objects in terms of the cigen veetor

corresponding 10 the maximal cigen value of a matrix whose (i, i element is the ratio of evaluation of object i to
o] object § [1] 12} 13). The idea is to intend 1o mli{y focal izlfny'tll:{lict:xs taken by paired comparison into a gloval
information.

Bul when the aumber of (obic'cls is loo targe, it eauses often worse seliability for a observer 1o evaluate all
paired comparisons at a time. In such case, it is necessary 1o decompose the whole set of paires of objects into
several blocks, and for cach block to be observed by one ohserver It is importamt how o decompose the sct of
pairs. We propose the decomposition by BIBD (Balanced Incomplete Block Design) well knows in the field of
experimental design [ [5]. And we show that this method is o give betfer evaluation under certain assumptions
by simulation experiments (§4). Further we propose the logarithniic least square method for our problem, and
show that this gives a good approximation (o the eigen value method in AP (§3).

§2 BiBD

Let E= 11,2, ...v] be the set of objects ¢ = 1. 2, ...+ The sumber of pairs among £ is ,Cu = pin—1)/2.
and il v is large this becomes very large and an observer cannol compair afl such pairs at a time. Let the sel of
objects which an observer can accomodale with sufficieat reliability. be called an “allowable block™, and let us
denote the size of allowable block by & (Zw).

Then we need 1o decompose the sel'of Co pairs into (he classes of size ;Ca and. te allocale several observers

o to these classes. Each observer makes paired comparisans in- his class. We unify these resulls and can get the
evaluation on £,

For example, there are v = 7 applicants for u prize essay, and we try lo judge their essays and 1o decider
ranking on them. Let the allowable block size he =3, that is. one judge can réad 3 essays and make paired
comiparisons on them. In this case, the ;Cy = 21 piirs are decomposed into classés of size ,C3.= 3. So we need

21/3 = 7 judges. We unify the vesults of 7 judues snto the ‘whole ranking on: Zoapplicants.
It is the problem how to decompuse the set ol Cp- puirs o blocks and how to unily thesresulls of

l observations on blocks into the whole evaluation, We proposc-the decomposition by BIBD and the unification by
y the eigen value analysis used m AP “ .t
BlBDon £ = 11 2. »! sstheclds D= {H, * M| of subscts.{ealled “hlocks™) B, & £ ((=1~6)
snlisiying the lollnwm;:s’, ool
‘et flirapyt=l~lv o -
it =k _ (the block size)is constant) ’ e 3
ol for any 1=1— 4
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{where | S ] denotes the size of a set S)

It is clear that Gi) implies (i), so (i) and Gid suffice for D to be BIBD. Specifically a BIBD with 1 =1 i called

Steiner systcm and here we consider only Steiner system. which is denoted by (v, £)-D.

Example 1 The class of subsets of £ = 1. 2, .. 7| shown in
Table 1 is (7, 3)-D. The pairs in each block are shown in write hand of
the block. -All such pairs construct the set of ;Ca pairs. In other word,
the set of pairs in E is decomposed into pairs in blocks.

We can represent this situation in terms of graph theory in the
following way: To construct {v, k)-D is equivalent to decompose the set
of edges of a complete graph with v points into complete graphs with &
points. {(—Fig. 1}

Table 1 {7. 3)D

o= W29 12,14, 28
By = 12,3,6] —= 23,2535
By = 2,6l - 31 306, 16
By = L5697 = I5,47. 57
B, = 5. 6.1 ~=5G.51.61
Be= G.7.2 = 67,6272
n= gl ~T.7313

(@)
Fig. 1 BIBD decomposition
By the graph theoretic representation staded in Ex. 1. we can easily have the following relations, .
®)
= bk 2-1)
vip-1)
PRI A, N
,C;_, HE-1) 2-2)
I {v, £)-D exists then integers v and k satisfy. (2. 1). (2. 2) with integers ¢ and b so for any integers v and k
we do not necessarily ‘have-{v. £)-D. For example (8, 3)-D never exists. But (3, 3)-D exists. s0 we can treat the
case y==8, k=3 by.taking oné of objects in (9. 3):D as dummy.
The conditions.of ‘existesice and construction methods of {v.-k)-D have becn widely and deeply rescarched in
the field of experimental designs and combinatorial theories [4] |5}, Table 2
In order to show why Lhe decomposition by the (v, 'k)-D is
appropriate, we propose another rather natural decomposition shown in = 23 —-1213, -’-3
Table 2. Of course this D= |B,, ..., B;} is not BIBD, where pair (1.,2) = (2341 — 23,2434
occurs 2 times in By and B;. while pairs (1. 4). (1. 5) do not occur ”1 =+[3.4.6 — 34.35.45
anywhere, By= M,5.6] — 45, 46. 56
) . . . m = 5.6.7 -~ 56 57.67
The author believe that (v, k)-D would give the best possible * 6.7 10 — 6"" Gl’ ot
decompositions for our problems. In the end of this section we give ; 7. ;.ZI - 7;' ,‘.’: ;2
another (v, £)-D in Table 3. ’ .
]
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Table 3

8, =11.2,4,100 - (.2, (L) (1.10) (23). (2,10} (4.10)
By =12,3.5.111 ~(2.3). (2.5, (211 3.5, (.11, (511
B, =13,3,6.120 ~ (3.4 (3.6). (3.12. (.6 .12, (6:.12)
Bi=M6.713 ~.6), A7 (113 5.7 (.13, (71D
B, =15.6,81 —~ (6. (58 (51, (6.8 (G @&1I1)
B =16,7.9.21 =167 69 (6.2 (.9 (9.2, 9.2
B; =17.8,10.31 — (7.8, (.10, (D (810, R3] (0.
By = [8,9,10,4]  ~ (8,9, (8. 11} 8.0 (.11), (9.4L (11.4)
By =19, 10, 12,51 — (L 10 9,125 (3,5,  (10.12):(10,8). (12, 5)
=00, 10, B 6L = (0, 10,00, 80, 00.6). . gl 1L 6), (1, 6)
B2 02,000 — 012,00 0 (1, 7 020 (12,9, (1,7
Hyy= N2 08,280 — (12, 104022, (2 8%, 3.2, (LR, (2 8)
Be= 0L a0 — gD gdh, d3.m ki (L (LY

oo

#3 LLS. AlIP estimation

Let 11, «, af be the set of ofjects i =1,2,--.n. An observer observes the ratio of evaluation of object i to
object j and let us denote the observation by x;;.

We assume the statistical model of x;; to be

xy=ay- ey ey=wlw; (i<j.ij=1~n) G-n
x,;=b/x ’
3
Where w; (>0) is the real cvaluation of object i and is an unknown parameter, and ¢ (>0) is an idcpendent
random variable representing the error of the observation. And we always recognize that any multiples of [wy -
w,) are equivalent to [w,"'w,.] itsell, Further we assume that

E (ne)=0, V (iney)= o%(n) (3-2)

and o %(n) is a monotone increasing function of n, the number of objects ta be observed.

Whether these assumptions are reasonable or nol is a psychological or a. physmfomcal problem, bul we can
agree with these assumptions as a irial scheme.

The main purpose of AHP is to get cstimates t; of w; (i= 1 ~njby calculatlng the cigen vector w=|d,, -,
t,corresponding to the maximal eigen valne A of the nxn comparison matrix X-—-|xul.

Of course we have otlmr estimation methods. The most natural one is “logarithmic least square (LLS)". For
slmphctty let x.j=ln T w‘—ln w; and eu=ln ¢;. Then we have

s=w—wtey (<j i, j=1~n) (3-3)
Appling the least square method to{3 - 3)we have lcast last square cstimate %; of w;, and taking inverse
transform we have .
W;=e™ (i=1~n). This is LLS estimation. .
For example let n=3, Then we have

D1z=wy—wyteyz, Diy=wy—wytern Ta=w—waten (3-:4)

As the vector w=fw;, -, w,] multiplied by an arbitral constant is equinalent to w itself, We can assume
wyw,wy =1, so we have

;, +l;z+;3=o (3+5)

Appling least square method tot3 = 4)(3 * 5)and taking inverse transform we have

W g,

iy =ey2 1y Strzn sV Bl 2" {(3-6)
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This estimation 1s very simple. but we have a surprising fact that w, (i=1 -3} in (3 - 6} comncule with the
components of the eigenvector corresponding to the maximal eigenvalue of the comparison matrix X={x,} That is.
we have
Theorem 1 In the case n =3, LLS estimates coincide with AlIP esumates
Prool In case of n=2, we have easily

W= VI, #= Vi, 37

*

T

andk the maxima! eigen vatue of 2X2 comparison matrix 15 2,56 W Wi (7Y are the MIP extmges
In case of n=131. from {6) we have

J Xz Xyl ] =4 [iy

¥z 1 X w i

Tay Xux ] iy iy !
A=14+r+ l/'. Y‘::"!/X]g Xau Xy 4

by direct. calculation. But from Perron & Frobenius Theory we can state that if a positive matrex has o positive
eigen vector then it corresponds to the maximal eigen value, {A positive matrix (velor) means @ matrix (vector)
whose components are all positive), (See the proof of the theorem - in [6]).

Like the case 01=3 we have general LLS estimates

=00y 2" i=1 3-8

which can be'stated simply as W, is the geometric mean of i-th row of the compadrison matrix X

But unfortunately they no Jonger coincide with AP cslim.ncs for n>3. Thus if n2>3 lhvu Theorear T des
not hold. But through Theorem 1 we can state that if @ %(n) iS reasonably small’ LLS Sstimates ‘must be good
approximations Lo AHP -estimates even if 1 is greater than 3. This also teaches us th.u our statistical model (3
1) is valid for the AHP analysis.

84 Decomposition Methods by BIBD °
Now we propose our decomposition methods by BIBD, We arc given the set of objeets E= 11 2. =, o] to be
evaluated. Let the allowable block size k be far smaller-than v We decompuse E into blocks 3,. - 13, which
construct Sleiner system (v, k)-D.
Step 1 For each B,= |3, B, . 8] SE an observer observes the objects and sols observalion LR
paired comparison B, to B, (t<s;1, s=1, -, k}. Note that the observation error of x | i {measuned bv Vil
Xpp )= &*(k) ) is far smaller than the one incurred by the observation'in the whole set ¥

Slepz Let *
= ¥
- "~
S.=ly o, Tap %g ol LR S
and fet
S=l, PREPR X8, R ! on
3 i 4
= x5 Wy 5o Veg 1
. 3
fore=1 2, b
Then by the properties of BIBD § *
LT S WY A AR . :
s
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constructs the set of all paired compartsons a,, ¢ 4~ 1

matrix \' =i, |

Step 3 We apply the usual AHP to the comparison matsix N, that is. we calenlate the cigen vector

W=y, try, .ty

corresponding the maxamat eigen value of X The §, 15 the desired estimate of w, m (3 < 1),
Example 3 (v=7 k=3. BIBD decomposition)

Let wy, o+, ws (3 ¢ 1) take the values shown m Table 1, Of course these are unknown for the observers and
are to be estimated. Further a, =w,/uw, (i. j= 1~ 7) are atso shown in Table 4,

For each block B, {shown in Tabli 2) am ubserver takes observations x , aod

rl from whiels we construct the v X v ¢ompanison

x X ity whuere

X, , =a ¢ 4-3)
ity Vet C oty (1

and @, , 15 a vandom oumber whose logan s {n eﬁp nocmally disteshutes with zeso mean and vateaee 4 (%)

by onr mdel (3 - 1), (3 - 2) (For the .ulual vitlie of 4”( Baeotl ~al Fure L2 7 8=, 400, A
oy »

;»hl and 8, = h',x',' 1/ " ',3.4‘,",‘ = I/x',",’. g, 1/4 " ,3}‘-1 o shown i Tabled in llw e form
1 1 )
. X dy Yt
z,= PSP R S (-
2 1 ) I‘ 27y
;:‘ { l"llz

Unifying Xy, -+, X7 we have the 7X 7 comparison matrix X shown in Table G, and calealenlating the: vigen
vector for the maximal vigen valuen 4 of X we bave the estimates wy, ++, w; shown also in Table 6. Comparing
w, taar, (f=1~7) we cant say that we have geserafly Taisly good estimates,

Now we consider the actaal value of a7} in onr model (3¢ 1) Of conrse this depends on the given veal
probiem. But we assum

a (3) “=0.158%. 6 (4) =0.260 . ¢ *(7) =0.5° (1 H=0.980° (1-5)

as trial values in our simulations, where & “{n) i roughly propatinal to ,Co.
Example 4 (v=7, direct method)
Here we will describe the usual AUY method applied directly to Table 4. We multply a, by a random
number ¢; and have
2, =a, e, @E<fij=1 7

where ine,, normally distributes with zevo mean and varianee o 7)== 15 (—=(4.5) ). and calculate x,=1/x,,
then we have the comparison matrix X=|[x,| showa in Table 7. Calculation the eigen vector for the maximat cigen
value & we have estimetes @; (i= L. -, 7) shown alson in Table 7. quite worse than the ones in Table 6.

Next we try to investigate another case v=13, k=4 in Examples'S, 6 aloag Lhe same line as above.
Example 5 (v=13, k=4, BIBD dccomposition)

We show w; (i =1~13) and a;=w;/w, {i. p= 1~ 13 Table 8. and{13. 1)~ D and its comparison
abservations in Table 9, where the logarism of the random menbers have'the variance 6 %(4)=0.250%(in {4 - 5)).
Fimally the vnified comparison matrix X and its maximal ecigén value and the corresponding cigen vector are
shown in Table 10. These give us rather good estimates.

Tabte 4 7%7 {a,)

1 2 3 4, 5 6 7
wi=1 LR LET 243 RUN BUM GG ASIGE |
w;=0,538 Z {0,538 | w438 43 LM 24 l
w=0.019 3 |0:04595 0.0009 ) 0.39%2 03962 01765 w22
=120 4 101235 0.2 2S5 ) h 0.4154 o..'myl
w0124 35 {01235 02294 254 | 1 045 0,5579
w=0.217 6§ 10.2i71 0,552 667 225 2245 ) 1.253

»=0.221 7 02214 AL 150 T iwz 1.792 0,798 1

.




Table 5 \¢ X \
1 2 4 2 3 5
s=112.4 11 L540  7.23% | Be=1235 2] B 6an, :
5=  2]06493 ) 4.269 [ Xe= 3/0.07665 1 0 1057
wfom  a2nz 1 | s{0.0620 @465 1
3 ] &
H=1Ba6 311 0.4033  0.1975 “
M= 4fzais 8 0.3329 s A 5 .
6]5.063 "i‘.‘,?‘ ' . Be= 154 {1 A0 45500
6 ] Xe= S5]0.99m ), n,551 1
- 750
when s 037 0,036
\ = W 3 1 LI X2
| aam )
v t 3 [ H , ¥
B A i (DR T/ | =672 6} 1.2
xo=d plaar JLE Xom o THOse 8
Blezmt 005172 ) 2|08 k760t

Table 6§ 7% 7 X = [, ] 118D decompratson?

1 2 3 4 ] [ 7. 17,0291
14t 1L.s0 18,33 7.236  BBM 30 BT, Wy =1 P
2 |o6193 1 13.046 .26 6.17) LRSI 2760 | dp=0.6067 s
3 {0.05173 007665 1 DADRS 0057 0.1975 022081 0.0 .
4100382 ozuz 241 | ER U N | . IR 501 T S N
t SEI0.135 062 zaes G99 ) [ N L
G [0.2632 05317 5063 3.1 2572 1 L2261 - 0,2916 :
7 ]0.0870 03623 4,361 1789 1.EM 08160 ) l Ser=0, 2042

Fible 7 X =[x, {useal AGP)

) 2 3 A L5 6 7 a=7.323 "
! 1.731 1329  7.942 8,944 1437 4.56 | @=L
0.5777 1 L8, 4720 6245 2188 Ad73 | %2=0.767Y
007524 0.08562 1 03694 1,190 0.1597  0.3299| wx=0.0793 .
01259 o023 0707 1 0.5543  0.3720  0.3892] w,=0,1303
01118  0.1501  0.8¢02 1.801 } 0.5835  0.6611 | w<=0.1160

. 0.695  Q.4570  6.262 2.688 .71 H 2,150 | wa=0.139
0.2193  0.23%6  3.031 2569 , 1.513 04650 | C we=0.2201

* tmid ibaienl teie brgbemt Bt ra & i, = v e 3

Example 6 (v=13, diriccl methad) t

If un observer observes 12C. paired comparisens-x, (E<jii.j, =1~ 13} at a time, then the logonithm of
observation crror ¢, has variance ¢ % (13) =0.980% (= (1 * 5) ). We calcglate.5; =4, ¢; from Table 8 and the
random numbers_e,, Wwith above mentioned properties. X'= |z} and its meximal;cigen value and its cigen vector
are showndn Table 11, These estimates almost have no reliability.

At the end of this section we ndle that we can use LLS estimation (—=%3) for our purpose.

First we apply LLS estimation (—{3 * 8) ) to Table 6 (Example 3} and have @, as estimate of u, (i=1 ~7) (in
Pable 4). These are shown in Table 12, where w; {in Table 6) are shown again for the comparison. (Of course f,'s
are standardized as w;"=1). We can see that W, gives a surprisingly good approximation to w, (i=1~7),

Secoud appling LLS to Tahle 7 we have Table 13. This also gives farely good approximalions. Next we have
Lable 14 from Table 10 and Table 15 from Table 11 by the same way as above,

Generally we can say that the LLS estimation gives a good approximation to the cigen veetor estimation when
the abservation erroris small and the sumber of abjects s small.

The tahor of the caleulation af the LLS is far casier than the cigen veetor method. The former 15 casily done
o a desk ealenlator of pocket size, but the latter needs at least a personal computer Sp the advastewe of LLS
wethd shanld be highly appreciated even in the highly computerized conntries like Japan USA amd ete Never
Ha less tie anthor thnk that the deep meanigg of AHIP is concealed m using the emen vector for o estsmation
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wo =00 slo.esat 0z ot od 4
wi =0.0792 610-590.& 0.6560 072 0§t 0.9
ws =0,0713, 7 L0531 0.5905 0.65%1 0.729  0.81
we =0.061) RIOATEI 0.8314 05006 06561 0,75
we SO0 9104305 047K 05311 0.5K6 0,651
n NATRY 0531 0 Geonh
1 0,165 0 0 30
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3
Table 11 13XT3 N =[x, tususd AHP
H 2 3 [} 5 6 7 3 Y 10 It 12 [K3
H 1774 1,071 2,175 L.819 05758 1.G45 1238 16.16 3908 ORI | W02 3Nt
0.5635 1 0.8771 3,227 1.783 0.4639 0.2651 L.41t 1.370 0,983 .um LR S M {4
09338 {130 1 6.522 .00 2,004 04587 4.016 3.7 L0126 0GR N2
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Conclutions

Far the statistical model stated in (3 - 1) 3+ 2) our BIBD methog gives better results than the usuat
AHP method. Further the LLS method (3 - 8)) gives very good approximation to the ecigen valwe method,
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