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Abstract: The viability of AHP seems to increase by incorporating GA to deal with 
ambiguities in ordinary human judgment. The purpose of this study is to evaluate 
Matsudais (1999) approach by simulation. Ambiguities inherent in ordinary judgment 
lead to indeterminacy about the final output of AHP and other decision-support tools. 
In this study, we first employed a wave model to compute the upper (U) and lower (L) 
boundaries for each judgment in AHP. Letting R denote a response value, we obtained 
a triplet <L, R, U> for each AHP item from which numerous value combinations were 
possible. GA (Genetic Algorithm) helped us find a desirable combination of them in 
terms of dp (degree of prudence) derived from the ratio of the highest priority adjusted 
for the number of alternatives. The initial generation was created under two coding 
schemes at each AHP level: biased and unbiased coding. We conducted a Monte Carlo 
simulation to test how well the present approach improved dp from the original input. 
The test was part of usability evaluation of the present approach. 

Introduction 

AHP (Analytic Hierarchy Process), proposed by Saaty (1980), has been known to be quite a viable 
decision support tool in many areas. It derives relative priorities for a given alternative set from the 
weights accorded to hierarchically arranged decision items. Its user-friendliness stems from the localized 
evaluations within a hierarchy, since our natural judgments are mostly kanseic rather than rational. The 
contrast does not mean that kansei is irrational. Instead, they both constitute human intelligence, but 
differ in orientation as follows (Matsuda, 1997, 1999): 

Rationality: Intelligent capacity oriented toward unambiguity, precision, rigor, consistency,... 
Kansei: Intelligent capacity that allows partial deviations from such standards. 

In short, kansei enables us to live with practical efficiency when relevant information is partially 
available, optimal procedures are not completely known in the ever changing environments. Within 
reasonable bound, however, kansei leads us to attain, to a satisfactory extent, what rationality strives for. 

Taking advantage of the hierarchical structure of AHP, its user can concentrate on localized or 
partitioned judgement, leaving systematic information integration to the tool. Nevertheless, we believe 
that the standard pairwise comparisons are too fragmented and repetitive for the user to maintain 
consistency even in the partitioned classes. As a solution, we suggest simultaneous multiple comparisons, 
making use of interactiveness of graphical computer interface (Matsuda, 1999). 

To further enhance the practicality of AIIP, we propose here an application of GA (Genetic 
Algorithms) in expectation of reaching a set of priorities among awfully many possibilities arising from 
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ambiguities inherent in kanseic judgment. A procedural tool that bridges between GA and AHP is called 
a wave model that generates upper and lower bound values for each judged value of the user' s. 

Ambiguous judgment is, in brief, assumedly measurable at least in intervals within which a response 
value falls. However, the partiality of kansei is likely to induce ambiguities in expressions about the 
boundaries., i.e., the second-order ambiguities. The recursive nature of such subjective ambiguities must 
be solved by a non-subjective procedure like our wave model to be explained in detail later. The model is 
expected to capture ambiguous judgment without imposing extra mental tasks on the users. 

The present paper presents use of GA as a means to support kanseic evaluation of alternatives by AHP, 
employing the wave model as a means of ambiguity quantification. GA is expected to lead us to find a 
prominent alternative among numerous possibilities. 

Method 

The following explanations are based on the AHP structure shown in Figure 1 for illustrative purposes. 
Levels are numbered from 0 to 2 so that the user can add higher levels, if needed. Naming objects and 
classes constitute important part of programming in terms of information design (Matsuda, 1997). 
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Figure 1. Evaluation structure by AHP 

Midpoint 

ScaleLength 

Figure 2. Sketches of the wave model 
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The model is a metaphor of waves hitting wharves on both sides of a scale (Figure 2). The height of 
the distribution may represent the probability, the degree of confidence, or a fuzzy membership associated 
with a value on the scale. It was originally suggested by Gardenfors, 8c Sahlin (1983) as a conceptual 
device to deal with the subjective second-order probability. Though their idea is stimulating, they did not 
provide functional specifications to conduct the present work. 

For the ease of presentation, we let R, L, and U denote the response value, lower and upper ends of the 
associated interval, respectively. The distribution under the model is symmetrical when the response 
value (R) falls on the middle of a scale, but becomes positively (or negatively) skewed toward the lower 
(or upper) end of the scale. Also, its range (U-L) reaches maximum when R is on the middle of the scale. 
The range decreases monotonously, as R nears the scale ends. Cos() seems to be a natural choice for such 
function, being simple and mildly nonlinear. The argument of cos() is the distance (relD) of R from the 
midpoint of a scale, Midpoint, relative to the half of the scale length, ScaleLength. The following are the 
formulas for computing Uand L from R: 

V R < Midpoint 
L=R-(marRange/2)*cos(relD) 
U=R+(marRange/2)*cos(relD)+atsin(relD) 

otherwise 
L=R-I(maxRange/2)*cos(relDist)+a*sin(relD)) 
U=R+(maxRange/2)*cos(relDist) 

where a is the coefficient that determines the asymmetricity of the distribution. In the present work, 
maxRange and a were set at 1.4 and 0.4, respectively. 

Degree or prudence (dp) 

AIIP priorities with small differences leave the user indecisive. If, in contrast, one or two alternatives 
are prudent in terms of priority, decision is easy. Under this premise, we introduce the following measure 
of prudence: 

dp = (max({priority} )-1/N)/(1- UN), OS Ns 

where N is the number of alternatives. When all the priorities are equal it is 0, whereas when only one 
alternative receives a positive. Note that AHP priorities are standardized so that they sum to I. 

Estimation by GA 

The task of GA is to find out the largest dp, by manipulating the combination of evaluations in terms of 
<L, U>. The following explanation is based on the structure in Figure 1. A chromosome was created 
at each level to confine crossover within a level: 

Level 2: * 
Level I: *** *** 
Level 0: **** **** **** **** **** **** 

where * marks a locus. Items at Level 2 are separated by a space, which is used as a delimiter among the 
corresponding items or alternatives at lower levels. At level 0, alternatives are to be arranged 
horizontally: 

abcd,abcd,abcd abcd,abcd,abcd 

The total number of assignment of <L, R, Eh to each locus amounts to 332 possibilities. 
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The first generation consists of individuals whose genes are created by biased- and unbiased-coding. 
The former is favors particular alternatives, while the latter has no such favoritism. 

Biased coding: The coding is unaffected by the judgment data differ at Level 0, but rely on them at higher 
levels. At Level 0, every alternative has its own gene in which U is assigned to the corresponding loci, 
while L is assigned to the remaining loci (see Table 1). 

Table 1. Biased coding at Level 0 

Biased alternative Coding 

a ULLL,ULLL,ULLL ULLL,ULLL,ULLL 
LULL,LULL,LULL LULL,LULL,LULL 
LLUL,LLUL,LLUL LLUL,LLUL,LLUL 
LLLU,LLLU,LLLU LLLU,LLLU,LLLU 

Suppose that Table 2 shows the obtained (standardized) data at Level 0. The Loci 1.22 and 2.2 at 
Levels 1 and 2, respectively, correspond to the largest value (.382) for a at Level 0. 

Table 2. Indexed loci and hypothetical data at Level 0 

Level Indexed Locus 

2 2.1 2L.2 
1 1.11, L12, L13 L21, 1.22, 1.23 
0 .090***, .183***, .066*** .195***„3I2**, .244*** 

Note: Italics are loci. Data of the other alternatives are marked by *. 

Then, U is assigned to these loci, while L are assigned to the rest as follows: 

Leve12: L U 
Level 1: LLL LUL 

Unbiased coding: This is divided into random coding in which an element of <L, R, ilk is randomly 
chosen for every locus (see Table 3), and uniform coding in which all the loci at a given level share a 
single element. To exhaust the possibilities in the latter, three genes are created at each level as shown in 
Table 4. 

Table 3. An example of random coding 

Level Coding 

2 
1 RRL LRL 
0 LRLR, RRLL, LLLL RRLR, LRLR,LURR 
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Table 4. Uniform coding 

Level Coding 

2 

1 LLL LLL 
RRR RRR 
UUU UUU 

0 LLLL,LLLL,LLLL LLLL,LLLL,LLLL 
RRRR,RRRR,RRRR RRRR,RRRR,RRRR 
UUUU,IJUDU,UUUU UUUU,UUUU,UUUU 

The chromosomes of an individual in the initial generation is created from union of the direct products 
of the above coding schemes: 

{random,uniform} Level 2 0 {random,uniform} red 0 {random,uniforrn}um 0
U fbiasedheys 2 0 {biased} Leven 0 {random,uniform,biased}L, vdo

The 35 fittest individuals in terms of dp are chosen as elite genes to remain the next generation. 
Additional individuals are created by crossover and mutation on the elite. Moreover, in order to avoid 
stagnation by incest, 20 individuals coded totally randomly were added. The same operation is repeated 
for the successive generations until no further improvement in dp is expected. 

Results and concluding remarks 

To obtain baseline information, we first performed blind search using 1,000 individuals created by 
totally random coding. The best dp in 10 independent trials was only 0.157. In contrast, the 
aforementioed GA started with only 400 individuals produced more than one elite genes with dp above 
0.200 only in three generations. Although the 20% improvement is not highly striking, efficiencies in 
time and in the size of individuals involved are certainly appreciable. More reuslts will be reported at the 
conference. 
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