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Abstr4ct 

The relative power of the members in a group of decision makers can be incorporated in 
the Multiplicative AHP ( a multiplicative variant of the Analytic Hierarchy Process), and 
henceforth in SMART (the Simple Multi-Attribute Rating Technique), via so-called 
power C,oefficients in the logarithmic least-squares method whereby we analyze the 
pairwise-comparison matrices. When each decision maker judges every pair of 
alternatives under each of the criteria respectively, aggregation over the criteria and over 
the decision makers proceeds via a sequence of geometric-mean calculations which can 
be carried out in any order. 
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1. Introduction 

Although many decisions are made in boards, committees, councils, and not by individual 
decision makers, the literature on multi-criteria decision analysis pays little attention to 
the pobter relations in groups. There is always a power game, however. In national 
decisiOn-maldng bodies, each member seems to have a "weight" which is "proportional" 
to the I size of his political affiliation. In international decision-making bodies, the 
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"weights" of the members are somehow "related" to the population size, the military 
power, or the gross national product of the respective countries. Alternatives which are 
weakly supported by the "powerful" members have therefore little chance to be accepted 
by the group, even when a multi-criteria analysis reveals a high degree of support for 
them under the erroneous assumption that all members would be equal. 

For more background information we refer the reader to Galbraith (1983) who defines 
power as the force that causes the persons subject to it to abandon their own preferences 
and to accept those of others. In general, there are three kinds of power. Punitive power 
wins submission by threats, violence, and/or punishment, compensatory power by 
incentives and/or rewards, and conditioned power by belief, education, and/or 
indoctrination. The sources of power are personality, property, and organization; in the 
above kinds of power they are used in various mixtures. The primary source of power 
today seems to be the disciplined organization such as a state bureaucracy or a modern 
corporation where administrators and managers exercise their compensatory and 
conditioned power via their position in the hierarchy. Decision-making teams in such an 
organization are confronted with the so-called bimodal symmetry: their external power 
depends on internal discipline. Hence, the need of a compromise which is accepted by all 
members of the team. 

In the present paper we consider an extension of the Multiplicative AHP (a multiplicative 
variant of the Analytic Hierarchy Process, see Saaty (1980), Saaty and Kearns (1985), 
and Lootsma (1987, 1993)) designed in order to model power relations in groups. We 
assign a weight coefficient to each member of the group, and we use these power 
coefficients in the logarithmic least-squares method whereby we analyze the pairwise-
comparison matrices. Although the subsequent calculations remain simple (one only has 
to solve a linear set of normal equations), it is not clear whether the weighted logarithmic 
least-squares method yields a plausible equilibrium solution for the power game in the 
group. And that is the hard question to be answered! We limit ourselves to decision-
making processes in a public or private bureaucracy, when the members of the decision-
making group have a common interest: they are supposed to present a joint compromise 
solution to those who asked the group to solve a given problem of choice. Not only the 
relative power of the grotip members, but also the criteria and their relative importance 
may have been prescribed to the group, albeit in vague terms which leave ample space for 
adjustment and interpretation. Thus, the power game is constrained by what is socially 
acceptable in the bureaucracy. We do not consider open conflicts in the initial phase 
when the actors use brute force and when an organisational structure for negotiations and 
problem solving is still absent. Similarly, we do not try to model the power which a group 
member may derive from his personality and/or his verbal skills. 

First, we analyze the Multiplicative AHP with the weighted logarithmic least-squares 
method in the special situation that each member of the group judges every pair of 
alternatives under each of the criteria respectively. This implies that the pairwise 
comparisons are complete: all cells in the painvise-comparison matrices have exactly the 
same number of entries. Moreover, the normal equations associated with the weighted 
logarithmic least squares have an explicit solution: we can immediately find impact 
scores for the alternatives by the calculation of geometric row means. Finally, the order of 
the calculations is immaterial: we may first average over the entries within a cell to obtain 
a group opinion about the pair of alternatives, and thereafter over a row within the matrix 
to obtain an impact score for the corresponding alternative, but we may also carry out the 
calculations in the reverse order. At a higher level, when we aggregate the impact scores 
(partial scores) of the alternatives under the respective criteria in order to obtain final 
scores (global scores), we can also compute geometric means in an arbitrary order. The 
final scores are the same, regardless of whether we average first over the criteria and then 
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over the decision makers, or reversely. Because this is a reaonable requirement for a 
sequence of aggregations, Barzilai et. al. (1987, 1991, 1992) laid down a set of axioms to 
guarantee that aggregations may be interchanged in two-level problems with multiple 
alternatives and criteria; they demonstrated that only geometric means have the desired 
property. In the present paper we establish the property in three-level problems with 
multiple alternatives, criteria, and decision makers. To illustrate matters, the original 
version of this report shows via the notorious example of Belton and Gear (1983) that the 
Multiplicative AHP does not suffer from rank reversal by the addition of copies to a set 
of consistently and completely assessed alternatives. The example was deliberately 
constructed to show such a deficiency in the original AHP. In recent years the issue of 
rank reversal triggered many heated discussions in the research community (see Dyer 
(1990)). Lastly, we observe that SMART (the Simple Multi-Attribute Rating Technique, 
see Von Winterfeldt and Edwards (1986)) can be extended in a similar way as the 
Multiplicative AHP in order to deal with power relations in groups, although the method 
is additive and works with difference information, whereas the Multiplicative AHP uses 
ratio information. 

Mathematically, there is no difference between the behaviour of the power coefficients 
and the criterion weights, at least in the proposed aggregation procedure. They are used as 
exponents in the weighted geometric means. This seems to make sense: aggregation over 
the criteria via geometric means is usually carried out in order to find a compromise 
between the conflicting preferential feelings within the mind of a single decision maker. 
Similarly, aggregation over the decision makers may be carried out in order to find a 
compromise between the preferential feelings within the group. The mathematical 
behaviour of the power coefficients therefore suggests that they are properly incorporated 
in the Multiplicative AHP via the weighted logarithmic least-squares method. In the 
original version of the present paper, this is illustrated by the power relations between 
member countries in the European Community, at,least under the assumption that the 
Gross National Product, the size of the population, or the number of seats in the European 
Parliament is a proper yardstick for relative power. 

2. Pairwise comparisons 

In the basic experiment at the first evaluation level of the analysis, two stimuli Sj and Sk 
(two alternatives Ai and Ak under a particular criterion) are presented to decision maker 
d who is requested to express his graded comparative judgement, that is, to express his 
indifference between the two, or his weak, definite, strong, or very strong preference for 
one of them. We assume that the stimuli have unknown subjective values Vj and Vk 
which are the same for all decision makers in the group (otherwise, a compromise would 
hardly be possible whereas the group members are supposed to arrive jointly at a 
common group standpoint; see the bimodal symmetry mentioned in the introduction). 
The purpose of the basic experiments and the subsequent analysis is to approximate these 
values by the calculated impact scores. The verbal comparative judgement, given by 
decision maker d and converted into a numerical value rjkd, is taken to be an estimate of 
the ratio Vj/Vk. Hence, since we only have ratio information, we may take the subjective 
values to be normalized in the sense that they sum to 1 or to 100%. 

In the multiplicative variant we convert the gradations of the decision makers' 
comparative judgement into numerical values on a geometric scale which is conveniently 
characterized by the scale parameter y Thus, we set 

rjkd = exp(78)jcd), 
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where ojkd is an integer-valued index designating the gradations of the decision maker's 
judgement as follows: 

very strong preference for Sk versus Sj, 

-6 strong preference for Sk versus

-4 definite preference for Sk versus Sj, 

-2 weak preference for Sk versus Sj, 

0 indifference between Sj and Sin 

+2 weak preference for Sj versus Sk, 

+4 definite preference for Sj versus Sk, 

+6 strong preference for Sj versus Sk, 

+8 very strong preference for Sj versus Sk. 

Intermediate integer values may be assigned to the gradation index in order to express 
hesitations between two adjacent gradations. A plausible value of the scale parameter 1, is 
given by ln 2, which implies that we are working on a geometric scale with progression 
factor 2 (see Lootsma (1993)). 

Next, we approximate the vector V of subjective stimulus values via the logarithmic least-
squares method. Introducing the set DA to denote the set of decision makers who judged 
Si with respect to Sk we approximate the vector V by the normalized vector C7 which 
minimizes the function 

I (In rjkd - In vj + In vk)2 pd, (1) 
j<kdeDjk 

where the power coefficient pd stands for the relative power of decision maker d (the 
relative size of the constituency or the country represented by him). We take the power 
coefficients to be normalized so that they sum to 1. Introducing the quantities 

qjkd = In rjkd = yojkd , 

and 

wj = In

we can rewrite (I) as 

E E (vcd- wk)2pd. (2) 
j<lc deDik 

Using the properties 
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qjkd = -tajd for any j and k, 

Dff is empty and cif:4=0 for atiy.i, 

we can write the associated set of normal equations in the form 

Rjwj Cjkwk=1, qjkdPd 
k=1 1 1 deDI 

where the symbol 

(3) 

Rj= E E pd 
k=1 deDjk 

denotes the total power in row j of the matrix of pairwise comparisons, and the symbol 

Cjk= Ipd 
deDjk 

the total power in cell (j,k) of the matrix. A normalized solution minimizing (1) can now 
easily be found. We solve the linear equations (3) to obtain a solution w* with an additive 
degree of freedom. Thereafter we calculate the vector v* with .components vj* = 
exp(wj*), and we use the multiplicative degree of freedom in v* to find the normalized 
solution 9. In earlier papers, Lootsma (1987, 1993) has shown that the rank order of the 
components of i (and hence the rank order of the stimuli) does not depend on the scale 
parameter y. 

3. Aggregation by geometric means 

When each decision maker expresses his opinion about every pair of stimuli, then 

Mk= (1, gl for any j and k, I 

where g represents the size of the group. The normal equations (3) can now be reduced to 

n 
n.wj - twk > qjkd Pri-

k=1 k=1 cM1 

Since there is no unique solution to the system of normal equations we may set the sum 
of the variables to zero in order to obtain a particular solution. An unnormalized solution 
to the weighted logarithmic least-squares problem (1) can now explicitly be written as 

vj = exp(wj) ii rjklid 
k=1 d=1 

(4) 
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Thus, we have a sequence of geometric means. When we average over row j in the 
pairwise comparison matrix of decision maker d, we obtain his estimate of the subjective 
value of stimulus Sj. When we average over the decision makers, we obtain the group 
preference for Sj with respect to Sk. Formula (4) yields the group's estimate of the 
subjective value of stimulus Sj. 

We are now in a position to consider the role of the criteria. We start from the assumption 
that the (normalized) criterion weights ci of the respective criteria Ci, i = 1 , ,m, have 
been set in previous group discussions and that they are unanimously accepted by the 
members. Alternatively, these weights were already given at the time when the decision-
making group was established (see also section 6). Let us now consider the basic 
experiment where decision maker d judges the alternatives Aj and Ak under criterion Ci, 
and let us take the symbol rum to represent the numerical value assigned to his verbal 
estimate of Vu/Vik, the ratio of the subjective values of the alternatives under 
consideration. The impact scores or partial scores aij of the alternatives Aj, j=1 n, under 
the respective criteria Cb i=1,...,m, follow from geometric-mean calculations over the 
decision makers and over the rows of the pairwise-comparison matrices. Lastly, we use 
the geometric-mean aggregation rule of the Multiplicative AHP to obtain an 
unnormalized final score sj for alternative Aj according to the expression 

or, equivalently, 

sj= "Nin flin fin rijkiiPd. 
1.1 kr-1 dr-1 

(5) 

We have again a sequence of geometric means which can be computed in any order. 
Moreover, the intermediate results seem to make sense, whatever the order of the 
calculations is: averaging over the rows in the pairwise-comparison matrices of the 
respective decision makers and thereafter over the criteria, for instance, produces the final 
scores of the alternatives for each decision maker separately. 

The original AHP does not have such a flexibility. True, it also "synthesizes" the pairwise 
comparisons of the individual decision makers via the calculation of geometric means per 
cell (Aczel and Saaty (1983)); next, however, it applies an eigenvector analysis to 
generate the impact scores of the alternatives under the respective criteria (the 
Multiplicative AI-1P uses geometric row means here); lastly, weighted arithmetic means 
(instead of geometric means) over the criteria yield the final scores of the alternatives. 
Alterations in the order of the calculations will generally not produce identical scores in 
the original AHP. 

More recently, Saaty and Alexander (1989) proposed to use the original AI-113 with three 
hierarchical decision levels in order to identify the most likely outcome of open conflicts 
such as in Northern Ireland or in South-Africa before 1990, where the actors were not 
even in eye-to-eye contact. At the top level of the hierarchy one finds the parties involved 
in the conflict, at the intermediate level the objectives of the parties, and at the bottom 
level the outcomes in the form of alternative political structures. Via pairwise 
comparisons the parties are weighted according to their power to influence the outcome. 
Next, the objectives of each party are weighted according to their relative importance for 
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the party. Finally, the alternative structures are compared in pairs according to how well 
each would satisfy a given objective in the view of the party. The authors use the 
arithmetic-mean aggregation rule of the original AHP on the simple ground that power is 
some sort of substance that can arbitrarily be fragmented and added together. Thus, one 
unit of power is divided among the parties, whereafter it flows downwards along the 
'paths of the hierarchy. It is further divided among the objectives, and from the objectives 
it is again divided among the alternative structures. Addition of the fractions of power 
arriving at the respective alternatives yields the final scores indicating the probabilities 
that the structures will eventually emerge when the conflict ends. This model tacitly 
assumes that pairwise comparisons on the basis of relative power (parties, decision 
makers) and relative importance (objectives, criteria) are similar to those based on 
relative preference (alternatives). Section 5 will show that this is not correct. The model 
also suffers from the shortcomings which are due to the application of additive operations 
on quantities which represent ratio information. 

Note that normalization of the impact scores and the final scores is a cosmetic operation 
which merely enhances the readibility of the calculated quantities. Since the decision 
makers are just requested to supply ratio information only (estimated ratios of subjective 
values under each of the criteria respectively), we cannot approximate the subjective 
values of the alternatives themselves but at most their ratios, under each of the criteria 
separately and under all criteria simultaneously. The fact that we use normalized criterion 
weights and normalized power coefficients does not imply that there would be even more 
degrees of freedom in the scores: we aggregate over the criteria and over the decision 
makers via weighted geometric means where normalized exponents are the rule. Thus, the 
calculated scores have a multiplicative degree of freedom only, which we can use to 
brush them up. 

In the original version of this report we illustrate the three-level aggregation procedure by 
a generalized version (with three decision makers) of the example of Belton and Gear 
(1983). 

4. Relationship with SMART 

In an earlier paper the second author (1993) found a simple relationship between the 
Multiplicative AHP and the Simple Multi-Attribute Rating Technique (SMART, see Von 
Winterfeldt and Edwards (1986)). The basicidea is that the ratio estimates rijkd can also 
be obtained by direct rating on a numerical scale with equidistant echelons. The decision 
makers are merely requested, when they judge the alternatives under a particular 
criterion, to express their judgement by choosing an appropriate value between a preset 
lower anchor value for the worst (real or imaginary) alternative and a preset upper anchor 
value for the best (real or ideal) alternative. In schools and universities such a procedure 
is well-known as the assignment of grades expressing the performance of the pupils or 
students on a scale between 1 and 5, between 1 and 10, or between 1 and 100 (the upper 
anchor value varies from country to country; sometimes the scale is even upside down so 
that the grade 1 is used to express excellent performance). Concentrating on the scale 
between 1 and 10 we use the following values or grades to represent the performance of 
the alternatives under a given criterion: 

10 excellent, 

8 good, 

6 fair, 

163 



4 poor, 

2 extremely poor, 

and we take the intermediate integer values to express judgemental transitions between 
these grades (9, very good, etc.). In pass-or-fail decisions at schools, the grades 4 and 5 
are normally used for a poor performance that can still be compensated by high grades 
elsewhere. The grades 2 and 3 designate a really unacceptable pereformance. What 
matters in SMART and in the Multiplicative AHP, however, is the difference between 
grades. For the ratio estimates, we have 

rukd= exp(y(gijd - gild)), 

where go and gikd stand for the grades assigned to the alternatives A j and Ak under 

criterion Ci by decision maker d. We set y = In 2, as we did in the Multiplicative AHP. 
According to formula (5) the final score of alternative A j is now given by 

m 
sj= exp( y ci Pd glid), 

i=1 ãl 
(6) 

which shows that we only have to apply two arithmetic-mean calculations in an arbitrary 
order. The criterion weights and the power coefficients are the same, regardless of 
whether we use SMART or the Multiplicative AHP. 

Unlike the AHP which elicitates detailed ratio information in a fragmented way, SMART 
collects difference information and it enables the decision makers to keep a holistic view 
on the set of alternatives. Working with SMART is usually faster. Moreover, because 
everybody has once been subject to his or her teacher's judgement, the grades are 
numbers with a strong qualitative connotation which can easily be used in multi-criteria 
analysis. Hence, SMART seems to be particularly useful in electronic meetings where the 
decision makers are under a heavy time pressure. 

Obviously, the Multiplicative AHP and SMART are logarithmically related and SMART 
is purely additive. This enabled L. Rog (Delft University of Technology) to incorporate 
both methods in the REMBRANDT program for multi-criteria analysis. The user has the 
option to choose between the Multiplicative AHP and SMART, under each criterion 
again, so that ratio information is collected under some criteria (estimated ratios of 
subjective stimulus values) and difference information under the remaining ones 
(estimated differences of stimulus values expressed in orders of magnitude). 

5. Scale values for relative power 

Because power coefficients behave mathematically like the criterion weights, we can 
assign numerical scale values to verbal qualifications like somewhat more, definitely 
more, much more, and vastly more powerful in the same way as we quantified verbal 
statements like somewhat more, vastly more important (Lootsma (1993)). Consider a 
decision-making group with two members DI and D2, and suppose that there are two real 
or imaginary alternatives A1 and Ak such that the decion makers have an equally strong 
but inverse preference for them under a particular criterion . These preferences are 
estimated by 
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exp(y51k) and exp(-ySjk) 

respectively, where Sjk designates the selected gradation of Di's comparative judgement. 
We assume that these preferences do not depend on the performance of the alternatives 
under the remaining criteria. Now, imagine that the group of the two decision makers 
jointly has a preference for Aj versus Ak estimated by 

exp(r9jk), 

where eft denotes the gradation which designates the group's preference. Taking co to 
stand for the relative power (the ratio of the power coefficients) of DI with respect to D2, 
we obtain by the geometric aggregation rule that 

/ / 1 e
expyr —c0+1 ojk)• ojk) — exP(Iejk), 

co-F1 

whence 

co —81k + eik • six - eik 
Note that co does not depend on the scale parameter y. It will be clear that 16'jk I <I3jkl 
because the group preference cannot absolutely exceed the preference expressed by the 
decisiommakers individually. It is easy to verify now that co varies roughly between 

and 16 when Sjk varies between -8 and 8, and 0 jk between the values -ISjk I and 15jk I. The 
rather extreme value co = 15 is obtained when Sjk = 8 and 6jk = 7, which means that Di's 
very strong preference for Aj with respect to Ak almost completely wipes out the equally 
strong but inverse preference of D2. So, we take a ratio of 16:1 to stand roughly for a 
vastly more powerful position. 

Assuming that geometric progression is also plausible for the gradations of relative 
power, we take the geometric sequence 1,2,4,8,16 to. model equal, somewhat more, 
definitely more, much more, and vastly more power. If we allow for hesitations between 
two adjacent gradations of relative power we eventually have a geometric sequence of 
scale values with progression factor 42. The inverse echelons are, of course, taken to 
designate equal, somewhat less,... , vastly less power. These values could successfully be 
used in pairwise comparisons of the decision makers, when there are no simple, 
measurable, one-dimensional indicators for relative power, but only the verbal 
judgemental statements given by managers or administrators who are involved in the 
establishment of a decision-making committee. After a conversion of the statements into 
numerical values, power coefficients could be obtained in a similar Way as criterion 
weights, and laid down in the committee's charter. 

The above results show that one has to make a distinction between the relative power of 
decision makers and the relative importance of criteria on the one hand, and the relative 
preference for alternatives on the other. We represented the gradations of comparative 
judgement by a geometric sequence of scale values, but the progression factors are 
different, '42 for power and importance, and 2 for preference. The distinction emerges 
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when we model relative power and relative importance via a particular experiment: the 
pairwise comparison of two alternatives by two decision makers jointly or under two 
criteria simultaneously. It is worth noting here that estimating the criterion weights and 
the power coefficients is politically more delicate than judging the alternatives. The 
choice of the criteria and the vague verbal formulation of their relative importance is 
usually felt to be the prerogative of those who established the decision-making committee 
(they could also compare the criteria in pairs in order to produce criterion weights). 
Relative power is even more sensitive so that it sometimes cannot be discussed, although 
it is observable throughout the decision process. We also note here that, just like the 
relative power of the decision makers, the relative importance of the criteria is a concept 
which exists in the mind of the decision makers, regardless of the physical or monetary 
units expressing the performance of the alternatives. The Multiplicative AHP and 
SMART properly model this concept via relative (not marginal!) substitution rates, to be 
discussed in a later paper. 

A simple example to illustrate the possible significance of the ratio 16:1 assigned to 
vastly more power is given by the relative power positions (population size, gross 
national product, number of seats in the European Parliament) of the member countries in 
the European Community. This is shown in the original version of the present paper. 

6. Concluding remarks 

Let nobody have the illusion that the above incorporation of power relations would be 
welcome in applications of multi-criteria analysis! In a project of Lootsma et.al. (1990), 
carried out to the order of Directorate-General XII (Science, Research, and Development) 
of the European Commission, the proposal to weigh the judgemental statements of the 
participating decision makers by the population size or the GNP of their respective 
countries was immediately rejected. Such a multi-criteria analysis would have been 
possible already with an earlier version of the REMBRANDT program developed at the 
Delft University of Technology, but it was too early to model the on-going power game 
in the Community explicitly. In other projects, we have similar experiences. Although 
public administrators and industrial managers privately agree that it could be interesting 
to explore the relative power of various coalitions in a decision-making body, an open 
analysis of the power game still seems to be too hazardous in actual decision making. The 
situation is far from hopeless, however. Multi-criteria analysis has been and still is 
confronted with considerable resistance, which is partially due to the widespread feeling 
that a volatile concept like preference cannot properly be incorporated in a mathematical 
model. Similarly, an elusive concept like power would not be amenable to a mathematical 
analysis. Given the numerous applications of multi-criteria analysis, however, we fail to 
see why power relations should be unattainable for mathematical modelling. 

Nevertheless, the road will not be easy, and there are particular stumbling blocks. In 
general, the literature on multi-criteria analysis ignores the question for which type of 
decision makers the respective methods have been designed. For the charismatic leader? 
That is difficult to believe. For the cool, balanced administrator? That is possible. For the 
manipulating gamesman (Maccoby (1976))? That is unlikely, but he may occasionally 
turn to the formalized approach of multi-criteria analysis. The literature also ignores the 
cultural background of the decision makers, although there are several dimensions to 
categorize and to understand their behaviour, such as individualism versus collectivism, 
large versus small power distance, strong versus weak uncertainty avoidance, and 
masculinity versus femininity (Hofstede (1984)). Finally, the recently developed 
information technology for group decision support may have a significant and unexpected 
impact. Extrovert decision makers tend to drop out of electronic meetings because they 
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are dismayed with their inability to use their strong verbal skills in the voting and 
calculatien mechanisms (LaPlante (1993)). What it all means is that, without a taxonomy 
of the decision makers and their typical behaviour in a decision process, it may be 
difficult to distinguish the potentially successful applications of multi-criteria analysis 
from the hazardous ones. 

In fact, although we considered three decision levels, we do not really propose a 
hierarchical model. We only formalized the concept and the gradations of relative 
importance and relative power via a model which is based upon the pairwise comparison 
of alternatives under some (two or three) criteria and by some (two or three) decision 
makers simultaneously. This implies, legitimately, that the criteria and the decision 
makers are dependent on the alternatives. Criteria in a given decision problem are 
selected top down, on the basis of previous experience in related problems, and bottom 
up, on the basis of particular properties of the alternatives under consideration. Similarly, 
members of a decision-making committee are selected, not only on the basis of their 
position in the public or private organisation, but also on the basis of their ability to judge 
at least some of the alternatives under the prevailing criteria. So, criteria are not 
subordinate to decision makers, and vice versa. There is no simple top down hierarchy in 
a decision process: it niay go through a number of cycles where alternatives, criteria, and 
decision makers are introduced and/or dropped, until an acceptable compromise solution 
has been reached. 
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