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ABSTRACT 

 
The question addressed in the paper is: “Is it always necessary to take expert competence coefficients 
into consideration while aggregating individual expert judgements using AHP?” Some recent studies 
show that while aggregating direct cardinal and ordinal individual estimates expert competence does 
not matter significantly in cases when the number of expert group members is relatively large (more 
than 50 experts). The present study is aimed at clarifying the issue in case individual expert judge-
ments are provided as pair comparisons in fundamental scale and aggregated using AHP methodo l-
ogy. Expert estimates are modelled based on presumptions that they are distributed according to ex-
ponential and absolute normal distribution laws. Experiment results confirm the presumption that un-
der large expert numbers competence of individual experts does not matter significantly and can be 
neglected, but if the number of experts in a group is relatively small, expert competence should al-
ways be taken into consideration. 
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1. Introduction 

Taking expert competence into account while expertise conduction is a rather laborious procedure, 
since it involves estimating expert competence evaluation in one way or another, so, obviously, in or-
der to reduce expertise cost we should try to exclude this stage while group decision-making support 
(certainly not at the price of expertise result adequacy). So, let us focus on necessary conditions of ex-
pert competence consideration while individual expert estimate aggregation.  
There is a presumption, that the significance of expert competence consideration while group deci-
sion-making is inversely proportional to expert group size. So, consequently, after exceeding a certain 
expert group size, it is inappropriate to take expert competence into account. The hypothesis is con-
firmed by research conducted while direct estimation of a certain single object (Zagoruiko, 1988; 
Liubchenko, 2005) and, as a result, it was concluded that under maximal acceptable expert estimation 
error of 20 % and expert group size of at least 30 experts, the differences in expert competence can be 
neglected.  
 
We conducted similar research for the case of group ordinal expert estimation. As for the case of ex-
pert competence consideration significance while building pair comparisons in the AHP (Saaty, 

                                                                 

 Corresponding author 

mailto:vitaliy.tsyganok@gmail.com
mailto:sergeykadenko@mail.ru
mailto:andreychuck@ukr.net


Proceedings of the International Symposium on the Analytic Hierarchy Process 2011 

 

 2 

1980), we are not aware of any research having been made in this direction. So, our paper addresses 
this specific issue. 
 
We tend to believe that expert competence consideration significance while using AHP during group 
expert examination depends on individual expert estimate (preference) distribution law and on the 
number of alternatives estimated. 
 

 

2. Modelling the experiment 

 

2.1 Expert estimation process simulation 

Let us imitate expert estimation process (i.e. results of pair comparisons in the Fundamental scale) us-
ing the Monte-Carlo method, since involving real experts is a costly procedure problematic to organ-
ize. Let us follow the non-parametric approach to expert estimation modelling, suggested by (Orlov, 
1996), since it is virtually hopeless to try to determine the expert estimate distribution law in the gen-
eral case. In our opinion, the expert estimate distribution law depends on multiple features of a spe-
cific expertise and a specific expert (his knowledge in a given domain, his understanding of the exper-
tise subject, the scale he estimates the alternatives in etc), so it is inappropriate to try searching for a 
universal distribution law for any type of expert estimates. Thus, let us consider the experimental 
function behaviour based on several possible expert estimate distributions. 
 

Even distribution is unsuitable, because when the number of modelled expert estimates is fairly large, 
multiple “opposite” opinions appear, and aggregate alternative estimates are too unstable.  So we con-
sider the expert group competent enough, so that the experts’ estimates lie close to certain true values 
(representing the mathematical expectation of modelled random estimates). Let us consider require-
ments to resulting distribution of modelled experts’ estimates: 
1) probability density function (PDF) must be defined on all Fundamental scale range;  
2) the function must be continuous on all its definitional domain; 
3) the function should have a maximum in some given „true” value; 
4) distance from a given true value to points with equal values of function should satisfy the ratio 
scale requirements. 
 

According to the above-listed items we propose to simulate individual expert estimates specifying de-
viation from a given true value. The deviation shows how many times in one direction or another, the 
true value is changed. In other words, the deviation is a random value which multiplies or divides the 
given true value to simulate the expert estimate. 
 

2.2 Modelling deviation 

Let us specify deviation as a random value distributed according to a certain law in the [1, ∞) range, 
where the only PDF f(x) maximum is achieved in the point x=1. After that, a mathematical operation 
on the deviation (multiplication or division) is chosen uniformly. Thus, we can formulate require-
ments to deviation value distribution law: 
1) PDF must be defined in the range [1; ∞), but the interval, where significant part of the function lies 
and where random value belongs with confidence probability of 0.95, should be the interval [1; 2] (it 
means the experts’ probable error does not exceed 100%); 
2) the function must be continuous in all its definitional domain; 
3) in point x=1 there is a unique (the only) maximum of the function (the function is a monotonically 
decreasing one). 
 

2.3 Suggested expert estimate distribution laws  

According to the requirements, we suggest studying the cases when individual expert estimates’ de-
viation from a given true value is distributed according to exponential and half-normal (absolute-
normal, special case of folded normal) laws (see Fig. 1).  
 



V. Tsyganok, S. Kadenko, O. Andriichuk  

 

 3 

 
Fig.1 Distribution laws of individual expert estimates’ deviation from the given “true” value. 

 

PDFs, shown on Fig.1 are shifted by 1 to the right in order to allow using their random values as mul-
tipliers (whose values in this case would lie close to x = 1).  
 
The PDF of initial exponential distribution is: 

0,)(   xexf x , 

where λ > 0 is the parameter of the distribution, often called the rate parameter. 
 
The half-normal distribution is derived from the normal distribution, having the PDF (known as the 
Gaussian function):  
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where parameter μ is the mean / expected value (location of the peak) and σ
2
 is the variance (the 

measure of the width of the distribution).  
 
So the PDF for initial (non-shifted) half-normal distribution (at μ = 0) is shown as follows: 
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In addition, functions’ parameters σ and λ are fitted so that distributions’ mathematical expectations 
are equal. So mathematical expectation for exponential distribution law equals 1/λ, and for half-

normal law it’s  2 . In order for the deviation value distribution law to fulfil the first aforemen-

tioned requirement (the experts’ probable error is not allowed to exceed 100%) we can fit appropriate 
mathematical expectation for both distributions : from cumulative distribution function for exponential 

distribution   95.01 xe 
 1/λ = )05.0ln(x (in our case x=1) and it equals approximately 

0.3338 (33.38%). So we can calculate parameters for both distributions based on following relation: 

1/λ =  2 = 0.3338. 

 

2.4 Setting “true” al ternative weight values and pair comparison matrices 

Modelled expert estimates, lying within the vicinity of the true value, are given in the Fundamental 

scale. So, let us define the true alternative weight values miwi ,1,   (they should lie within the same 

order of magnitude and be distinguishable (Saaty, 2008)). Without loss of generality, and for conven-
ience’s sake, let us presume that given alternative weights are sorted in order of decrement. Now let 
us assign a weight (for example, w1=10) to the 1

st
 alternative and define other weights based on pre-
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sumption that in order for alternatives to be distinguishable, there should be at least a 5 per cent dif-
ference between their weights, and, on the other hand, they should belong to the same order of magni-
tude. Such an array of weights can be built according to the following recursive formula : 
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value from a given range.  
 

For example, based on the recursive formula we’ve obtained non-normalised weights for various 
numbers of alternatives m (see table 1). 
 

Table 1. True alternative weights, generated for various numbers of alternatives. 
  

m (number of 
alternatives)  

w1 w2 w3 w4 w5 w6 w7 w8 w9 

3 10 7.5826 1.2476       

4 10 5.3495 4.7273 1.5106      

5 10 8.9470 7.7068 5.4742 1.3742     

6 10 7.6739 6.5496 4.4959 3.0977 1.1034    

7 10 7.3787 6.7863 5.5722 4.4722 3.5430 1.1577   

8 10 7.2015 5.4130 4.0386 3.4689 2.6224 1.6240 1.0927  

9 10 8.4819 6.9407 6.3836 5.0463 3.4231 2.3741 2.0969 1.1204 

 

Then, based on this sequence of generated true alternative weights, we can form an ideally consistent 

pair comparison matrix (PCM) using the equation: jiij wwa  . Hereafter we consider the PCM re-

ciprocally symmetrical: jiij aa 1 , and so use only the elements lying above its principal diagonal (

ji  ). Since true alternative weights are sorted in the order of decrement and all alternatives are dis-

tinguishable, all elements above the principal diagonal will fulfil the following condition : 

jiaij  |1 . Besides, while defining true weights’ interrelations, we consider the Fundamental 

scale as continuous, and so, consequently, the elements of the ideally consistent PCM will represent 

real and not only integer values ( ija ). 

 

2.5 Fluctuating the PCM 

Now let us define a certain random fluctuation of the PCM formed above. Moreover, these random 
deviations of PCM elements’ deviations from true values (let us denote them as Δ) should be given in 
ratio scale, i.e. the following equation must be fulfilled: Δ=( aΔ+/ ae)=(ae/ aΔ-), where ae is the value of 
ideally consistent PCM element, subject to fluctuation, aΔ+ is the value of this same element in case of 
its increment and aΔ- is the value in case of its decrement. The random value of Δ is defined according 
to one of the aforementioned distribution laws (exponential or half-normal). Since the probability dis-
tribution functions of these laws are defined in the positive range (to the right from zero point), and 
the deviation is multiplicative, let us increase the generated random value by 1 (Δ=Δ+1). The devia-
tion direction (positive (aΔ+=ae Δ) or negative (aΔ-=ae/ Δ)) is chosen randomly, so, based on aforemen-
tioned distributions, defined on positive semi-axis (to the right from zero point), we get symmetrical 
distribution laws. And, since the elements of modelled individual expert PCM should belong to the 
discrete Fundamental scale, we shall approximate real values obtained in the described way with the 
nearest Fundamental scale mark. Thus, the elements of individual PCM can assume the values of: 
{1/9, 1/8, …, 1/2, 1, 2, …, 8, 9}. 
 

2.6 Estimate aggregation rules  

The next experiment step is the aggregation of just modelled PCM. We suggest aggregating the PCM 
using the geometric mean of respective matrix elements. We suggest calculating two variants of the 
aggregate matrix: with different individual expert competence values and with equal ones. The i-th 
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expert competence ci is modelled as evenly distributed random value. In this case the aggregate matrix 
elements are calculated according to equations:  

n

n

k

ijkij aa 



1

 – without competence consideration;  


















  

n

x

x
k

c n

k

c

ijkij aa 1

1

– with competence consideration. 

Based on these two aggregate matrices alternative weights are calculated using the eigenvector 

method 
iw  and miwi ,1,  .The relation value  ),min(),max(max iiii

i
wwww   represents the 

difference of expert estimation results with and without expert competence consideration.  
 
2.7 Outline of the results  

The experiment was conducted for different expert numbers n, where n  [3; 200] and different quan-

tities of estimated alternatives m where m  [3; 9] (m is defined based on human psycho-
physiological constraints , allowing the expert to analyse no more than 7±2 object simultaneously 
(Miller, 1956)). One more experiment parameter is the distribution law of individual expert estimates 
(two variants under consideration are mentioned above). 
 
To ensure statistical reliability of modelling results for fixed confidence interval β it is necessary to 

perform no less than N repetitions of experiment:   PDN  , where D  is the dispersion of the 

random value under consideration; P is the expectancy of getting the random value lying within the 

specified interval β. Thus, to ensure getting of a random value in the confidence interval β=±5% with 

expectancy P =95% and under D 10%, the experiment is repeated for N=200 times. 

To realise modelling experiment special software was developed (see screenshot on Fig.2). 
 

  
 

Fig.2. Screenshot of modelling software’s input interface. 
 
The software’s interface allows to choose series of model parameters: distribution law of the deviation 
value (even, exponential, half-normal), mathematical expectations of the distribution law (average of 
experts’ relative error), the number of experiment’s repetitions (N), variable number of alternatives 

(m  [3; 9]) and experts (n  [3; 200]), as well as define if elements of modelled individual expert 
PCM should rounded to the nearest Fundamental scale marks or not.  
 

As a result, two variants of dependence between ξ and the number of experts in a group under differ-
ent expert group sizes (n) and different number of alternatives (m) are obtained (Fig.3a – for exponen-
tial expert estimate deviation distribution law, Fig.3b – for half-normal law). As we can see from the 
Fig.3, the plots go down below significance level (5% of differences between aggregate expert esti-
mates obtained for equal and different expert competence cases) when the number of experts in a 
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group equals about 50 for both deviation distribution laws. It means that under these and larger quan-
tities of experts in a group expert competence may be neglected. 
 

 
(a) 

 
(b)

 
Fig.3. Dependences between difference of expert estimates (ξ) for exponential (a) and half-normal (b) 

deviation distribution laws and the number of experts in a group (n). 
 

 

3. Conclusions 

Expert competence can be neglected when the number of experts in a group exceeds few decades. 
Since in weakly-structured domains expert examinations are usually conducted by small expert 
groups, in such conditions taking expert competence into account is significant for getting a reliable 
result, and cannot be neglected. 
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