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Abstract In the analytic hierarchy process (AHP) the decision maker makes comparisons 
between pairs of entities of interest. The comparisons can be thought of being influenced by 
random errors, and then the values of the ratios of the weights of the entities are values of 
random variables. Sometimes the ratio may be exceptionally different from the corresponding 
consistent value. Then the statement is called an outlier. In this paper we study the influence 
of the outlier on the estimates of the weights calculated by the eigenvector method and by the 
regression technique. It can be seen that outliers can have a significant influence on the weight 
estimates given by the eigenvector method and the logarithmic least squares regression. Here, 
we present the method of the logarithmic robust regression, which is robust in the presence of 
the outliers. We show by illustrative simulations how the solution of the logarithmic robust 
regression remains stable under random occurrences of outliers. 
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1 INTRODUCTION 

The standard method to calculate the values for the weights from an AHP-matrix is to take 
the eigenvector corresponding to the largest eigenvalue of the matrix, and then to standardize 
the sum of the components equal to one (Saaty, 1977, 1980). A drawback of this method is that 
there is no practical statistical theory behind it. A statistical approach is needed if one thinks 
that the ratios of the relative importance of entities contain random fluctuations. If one looks 
at real AHP-matrices from real experiments, the feeling of randomness comes to mind. There 
are also studies showing that in human decision making inconsistencies can be expected, see for 
instance Fischoff et al. (1980). In this paper we do not, however, consider the effects of the 
comparison scale on the inconsistencies (135yhanen et al. 1997, Salo and Hamfilainen 1997). 

A non-statistical approach to process imprecise or nonconsistent judgments is to embed 
them into intervals. This idea was first proposed by Arbel (1989), and futher developed by 
Zahir (1991), Arbel and Vargas (1992), Salo (1993), and Salo and Hamalfiinen (1995). Arbel 
and Vargas, and Zahir have an optimization approach, while Salo and 115m515.inen process the 
judgements as constraint intervals. Saaty and Vargas (1987) study the distribution on the 
judgment interval, and they have done a sampling experiment to study the impact of imprecise 
pairwise judgments on the weight estimates. 
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Crawford and Williams (1985), and Alho et al. (1996) propose the use of a regression analysis 
for analyzing AHP-matrices. In this approach the ratios given by the decision maker are thought 
as values of random variables. This method often gives very similar weights as the eigenvector 
method, and it has the advantage that it is supported by a well-known statistical theory. 

In an ideal AHP-matrix the pairwise comparisons are fully consistent. If an expert makes the 
pairwise comparisons one by one, there is random variation in the values of ratios, and sometimes 
an entity deviates considerable from the consistent value of the corresponding element. The 
following 4 x 4-matrix is an example from a real case study (Kangas et al. 1992). 

1 3 7 6 
1/3 1 5 3 
1/7 1/5 1 2 

I 

1/6 1/3 1/2 1 

The consistency ratio CR of this AHP-matrix is CR=0.069. The main reason for the in-
consistency is the entry (2,3) with the value of 5. The value 7/3 for the entry (2,3) should be 
consistent with the comparisons on the first row. In the regression analysis a deviating value is 
called an outlier, and here we follow the same term. The value 5 of the entry (2,3) has a strong 
influence on the values of weights given by the standard calculating methods. The eigenvector 
solution gives the weights 0.5762, 0.2648, 0.0874, 0.0716, and the logarithmic least squares re-
gression gives the corresponding values 0.5834, 0.2604, 0.0851, 0.0711. If we put the value of 7/3 
for the entry (2,3), and the value of 3/7 for the entry (3,2), the weights are the following: the 
eigenvector solution 0.6011, 0.2185, 0.1066, 0.0738, and the logarithmic least squares regression 
solution 0.5998, 0.2213, 0.1059, 0.0731. It can be seen that the inconsistency in the entry (2,3) 
has a noticeable effect on the weights. 

The regression approach gives a possibility to use a technique which is robust to outliers. 
The logarithmic robust regression applied to the matrix above gives the weights 0.6009, 0.2233, 
0.0952, 0.0805 which are near the values given by both the eigenvector method and the loga-
rithmic least squares regression applied to the matrix where the entry (2,3) has been changed 
consistent with the comparisons on the first row. 

Our aim is to highlight the use of the robust regression in the analysis of AHP-matrices. 
In Chapter 2 we present the regression approach and the method of the robust regression. In 
Chapter 3 we demonstrate with thorough simulations the differences of the solutions given by 
the eigenvector method and the robust regression. 

2 THE METHOD OF ROBUST REGRESSION 

The regression approach 

Let us take an AHP-matrix of size 771 x in with the entries rij, i, j = 1,..., in. So, rig is the 
relative value of attribute i compared to attribute j as perceived by the decision maker (DM). 
The entries rig make the pairwise comparisons data with the reciprocal relation raj = 1/ri3 for 

j = 1,...,7n. We first show how data can be put into a regression form. 
Let to,, be the true weights of the attributes with the condition wi -I- • • • + rn = 1, and 

let v1, ..., vr, be values of the attributes so that the normalized weights to,, can be calcu-
lated from v1, ...,v„., by normalization the sum equal one. Now, the observation rii is an obser-
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vation from the ratio vi/vi, and the logarithm log(r 3) is an observation from log(vi/vi)=log(vi)-
log(vi). For the total of ra(ra — 1)/2 comparisons we can write the equations 

log(r 3) = log(vi) — log(vj) = pi -pi + fi; (1) 

where Eij are random variables with expectation E[ci3]=0, and Oi=log(vi), i = 1, ..., m. 
The parameters pi are solved from equations (1) with the assumption that the random 

variables 6,3 are independent and normally distributed with expectation B[cz3]=0 and with a 
common variance Var[ci3[ = a2. That means the random variables log(r 3) are distributed as 
N(01 — f3, cr2). By normalization [3,Th=0 (vm=1) one comes to the usual solution of the least 
squares. The solution can be computed by using a standard regression program. 

The estimates of the weights uh, to, are calculated as follows: 

exP(A) 
tot — „ = 1, ..., m, (2) 

exp(131) + • • • + exp(An) 

where Si, ...,i3„, are the estimates of 01, ..., pm given by the regression analysis with the normal-
ization An = 0. The variances of the estimates can be calculated from the variances of /ii:s 
by using the delta method like Alho and Kangas (1997). 

The robust regression approach 

The theory of the robust regression can be found in standard statistical texts, see for instance 
Montgomery and Peck (1992). 

We take a regression model in general terms 

y ,xp-FE, (3) 

where y = y,OT is the observation vector of the response Y in rt trials, X is the design 
matrix of size Ti X in of the in independent regressors X1, x,„, p ..., Any is the 
parameter vector, and e = en,)T is a random vector of independent random errors 
residuals with expectation zero. Let xi = xim) be the ith row of the matrix X. 

The general approach to estimation of the parameters p is to minimize a function d of the 
residuals, 

min E d(ei) = min E d(yi — xil3). (4) 

An estimate of this type is often called an M-estimate, where M stands for maximum likelihood. 
There are lot of proposals for the function d. If we take d(z) = z2 /2 with a standardized 

variable z, the regression is the usual least squares regression. The function d(z) = Izi gives 
the so called least absolute deviation regression. We use in this paper Andrew's wave function 
d(z) = a[l — cos(z/a)] with the constant a = 2.1. We have chosen Andrew's method because of 
its popularity in the regression analysis. See Montgomery and Peck (1992). 
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3. DEMONSTRATIONS ON ROBUST REGRESSION 

Let us look at the following AHP-matrix of size 4 x 4: 

1 5 7 9 I 

A= 1/5 1 7/5 9/5 
1/7 5/7 1 9/7 
1/9 5/9 7/9 1 

(5) 

The consistency ratio of this AHP-matrix is CR=0. All the methods studied here, the eigen-
vector method, the logarithmic least squares regression, and the logarithmic robust regression 
give the same weights: 0.6878, 0.1376, 0.0983, 0.0764. We call these the correct weights. 

Let us suppose that the judgment in comparison of the entities number three and four is not 
the consistent relation 9/7 but it is 7/9. So, the entry (3,4) is 7/9 and the entry (4,3) is 9/7 in the 
comparison matrix. This changes the value of CR to 0.012. The eigenvector method gives the 
weights 0.6878, 0.1376, 0.0872, 0.0874, the logarithmic least squares regression gives the values 
0.6887, 0.1377, 0.0868, 0.0868, and the result of the logarithmic robust regression is 0.6878, 
0.1376, 0.0983, 0.0764. One can see that the values of the two last weights have been changed 
both in the eigenvector and in the logarithmic least squares solution, but the logarithmic robust 
regression gives the correct solution. 

If we change the entry (3,4) more, for instance if we give the value 1/2, and the value 
2 for the entry (4,3), then the solution of the eigenvector method and the logarithmic least 
squares regression change more considerable than above, but the solution of the logarithmic 
robust regression remains still the same. In this case CR=0.042, and the weights given by the 
eigenvector method are 0.6847, 0.1369, 0.0788, 0.0995, and by the logarithmic least squares 
regression 0.6880, 0.1376, 0.0776, 0.0968. 

The example shows that the eigenvector method and the logarithmic least squares regression 
are sensitive to outliers which make the AHP-matrix inconsistency, but the solution given by 
the logarithmic robust regression remains stable. 

A simulation study 

In this example we take the matrix A given in (5) which is consistent and has the weights 
0.6878, 0.1376, 0.0983, 0.0764. Then we generate from matrix A a new matrix where there 
are random errors in the judgments. First, we generate a normal distributed error for each 
judgment in the upper triangle by using the value zero as the mean and taking the standard 
deviation which is 10% from the consistent value. One can see by simulation that the coefficient 
of variation of 10% produces a significant variation of the estimates of the weights. Secondly, 
we take randomly one element of the upper triangle and give it the value 1. This is an outlier 
made randomly. Taking an element from the upper triangle means picking up randomly one of 
the possible comparisons of the entities. In some cases the value 1 is a strong outlier, in some 
cases it is a weak outlier only. Then we calculate the values for the weights both by using the 
eigenvector method and the logarithmic robust regression. 

The above procedure has been repeated 200 times, and the descriptive statistics of the 
weights have been made. The descriptive statistics can be seen in table 1. 
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We have thought in our simulations that the ratios r25 are continuous random variables 
with expectations given in matrix (5). We think that this will demonstrate the influence of the 
randomness. 

Table 1 The means and the standard deviations of of the weights from 200 simulations. 
Eigenv. = the weights calculated by the eigenvector method. Rob.reg. = the weights calculated 
by the robust regression. * = the mean differs significantly from the correct weight at the 5% 
significance level. 

Weight Mean 
Eigenv. 

Stdev 
Eigenv. 

Mean 
Rob. reg. 

Stdev 
Rob.reg. 

Correct 
weight 

0.6132* 0.0806 0.6854 0.0184 0.6878 
102 0.1632* 0.0485 0.1366 0.0114 0.1376 
las 0.1227* 0.0421 0.0987 0.0085 0.0983 

0.1009* 0.0386 0.0793* 0.0076 0.0764 

In table 1, the differences between the means given by the eigenvector method and the correct 
weights all are statistically highly significant. This tells that the eigenvector method does not 
give unbiased weights if there are random variations and outliers in the judgements. From the 
means got by the robust regression only the smallest one differs significantly from the correct 
weight, and the difference is very small. We do not see any considerable bias in the results of 
the robust regression. 

There is also a noticeable difference between the standard deviations of the weights given by 
the two methods. The standard deviations of the weights calculated by the eigenvector method 
are much higher than the standard deviations when the robust regression has been used. The 
large standard deviations of the weights trough the eigenvector method indicate that the random 
variation of the judgments has a strong influence on the eigenvector solution. The small standard 
deviations of the weights given by the robust regression indicate the robustness of the method. 

4 CONCLUSIONS 

The ratios of the weights given by a decision maker can be thought as random variables with 
definite expectations and variances. Sometimes, it may happen that the decision maker gives a 
ratio which deviates exceptionally far from the expectation. This kind of an outlier has powerful 
influence on the values of the estimated weights given by the standard eigenvector method and 
the least squares regression method. The robust regression technique is a method which is not 
sensitive to outliers. 

We have compared the use of the robust regression with the eigenvector method in analyzing 
AHP-matrices. If one generates outliers randomly in the AlIP-matrix the estimates of the 
weights calculated by the eigenvector method vary considerably, but the estimates given by the 
robust regression remain stable. The robust regression gives the solution connected with the 
consistent part of the AHP-matrix. This is due to the weighting method of the robust regression. 
In this method large residuals are weighted slightly only. 

In order to minimize the influence of outliers it is worthwhile to use the robust regression in 
addition to the eigenvector technique. If the eigenvector method gives the solution consistent 
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with the solution of the robust regression, then there are no problems. But if there are signif-
icant differences between some weights calculated by different methods, then the ARP-matrix 
is inconsistent. For instance, if the rankings of the weights by different methods are not equal, 
then the solution of the eigenvector method is justified to a more detailed evaluation. 
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