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ABSTRACT 
 

We have considered the approach to determining a priori distribution of error-free running time for high-
reliability components by the method of paired comparisons useful for the increase of their reliability 
indicators. The fuzzy variables are introduced. The degrees of membership of these fuzzy variables are 
interpreted as subjective probability of finding the error-free running time in different time intervals. The 
method of recording the expert evaluation accuracy has been suggested. 
 
Keywords: AHP, priori distribution, error-free running time, high-reliability components, expert 
evaluation accuracy 
 
 
1. Introduction 
To control the meeting of the requirements by such high-reliability components as components of nuclear 
reactors (Ostreikovsky, Salnikov, 1990), aircraft and space-and-missile engineering (Radaev, 1997), gas 
equipment (Mitrofanov, 2007), etc., it is necessary to evaluate small (below 0.01) failure probabilities for 
the preset error-free running time. When there is practically no statistics on the failures of these 
components during their operation, the error-free running time distribution law is required for evaluating 
the reliability indicators with acceptable accuracy. This permits, in particular, the subsequent use of 
information pooling techniques (Melnikov, Severtsev, 1987), for instance, Bayesian methods of pooling 
the a priori information and observational data (Savchuk, 1989).  
 
Determination of error-free running time distribution belongs to intricately formalized problems (there are 
no sufficiently accurate mathematical models for its solution in most cases (Ostreikovsky, Salnikov, 
1990), (Bolotin, 1984)). There is also no sufficiently representative statistics on the failures of high-
reliability components (Radaev, 1997). Therefore, to obtain the a priori distribution of error-free running 
time for a component, it is expedient to employ expert evaluation (Vishnyakov, Radayev, 2007). The 
necessity of using non-formal experience and appreciating the physical nature of failures is also caused by 
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the fact that, as is shown by simulation modeling of various distribution laws, small samples with the 
same mean values may result in considerable differences in description of distribution tail areas, which 
substantially influences on the accuracy of determining the reliability indicators of high-reliability 
components.  
 
The aim of the article consists in employing expert evaluation for finding out the type and parameters of 
distribution of error-free running time for high-reliability components.  
 
 
2. Problem formulation 
Let )()( tTPtF <=  be the law of distribution of error-free running time, T be the random value of 
error-free running time for a component. Select on the time axis n periods, within which the failures of the 
component under consideration are expected. During the operation a random component from a certain 
main entity may fail in the z-th (z = 1, 2, …, n) period, namely, its possible state. The error-free running 
time is associated with the discrete state of the component by relationship 
 

zttt ⋅∆+= 0                                                                   (1) 
 

where 0t is the maximum error-free running time, until which the component failures have not been 
observed yet; t∆  is the duration of the time period corresponding to the discrete state of the component.  
 
Then, discrete random value Z described by means of bar chart )(~ zfZ  corresponds to   continuous variate 
T  of the component with probability density function )(tfT . In its turn, continuous variate T can be 
made to correspond to discrete random value Z set by any method.  
 
It is necessary to obtain the expected distribution of the component’s error-free running time. 
 
 
3. Solution method 
The problem of obtaining bar chart )(~ zfZ  can be solved by the method of paired comparisons 
( a n a l y s i s  o f  h i e r a r c h i e s ) ( Radaev, 2007)) developed by T. Saaty (Saaty, 2008). All 
pairs of the  component’s states are presented to the expert and the latter each time determines which of 
them is preferable with respect to a possibility of finding the component’s error-free running time. In the 
course of assessment the experts take into account the following:  available data on all kinds of reliability 
tests of the component and its failures during the operation; own experience in evaluating the reliability 
indicators of similar components by various methods and other factors. The evaluation process results in 
paired comparisons matrix )( ijbB = where 
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where i , j  are the component’s compared states of n  possible ones. 
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The constituents of normalized maximum characteristic vector q of paired comparisons matrix B are taken 
to be relative weights characterizing a possibility of the component’s staying in each state. 
The method modification, namely, the method of paired comparisons  based on a qualitative 
at tr ibute with quanti tat ive preference judgment. In the course of paired comparisons and filling-
in of matrix B the expert not only selects the preferable state in each pair, but also indicates how many 
times this state is preferable with respect to a possibility of finding the error-free running time than in 
another state of the pair.  The method does not require compulsory transitivity of the expert’s preferences, 
while the processing of the paired comparisons matrices is easily realizable on computers.  However, the 
method has no clear physical interpretation and is unable to treat obtained evaluations q as subjective 
probabilities (Mitropolsky, 1971). This hampers a possibility of employing the conceptual and 
mathematical apparatuses well developed in the theory of probability and mathematical statistics for 
further operations with the obtained results. Therefore, let us complement the method with a fuzzy model 
(Cox, Hinkly, 1978).  
 
Let us introduce the following indistinct variables: 
 
1) “Possible error-free running time” (basic) – for evaluating the possibility of finding the error-free 

running time, i.e., probability density function )(tfT .  
 Auxiliary indistinct variables can be also introduced for solving such subproblems as calibration - 

clarification of the parameters obtained with the aid of the first indistinct distribution variable, 
evaluation of the expert’s assessment accuracy, etc.; 

 
2) “Expected error-free running time”  – for evaluating average error-free running time cpt ; 
 
3) “Most probable error-free running time” – for evaluating the distribution mode. 
 
Let the considered indistinct variable be determined on discrete multitude { }zZ =  from n  possible 

component states. Indistinct multitude Z~  on multitude Z  appears to be an aggregate of pairs 

{ }zzZ /)(~
Zµ=  where )(Z zµ  is the function of the error-free running time’s membership in the fuzzy 

set, whose sense is formalized by the chosen indistinct variable. The function of membership is made up 
of degrees of membership (relative weights zq ) of states Zz∈  in multitude Z~ . We shall treat them as 
subjective probabilities of finding error-free running time z . Meant by the subjective probability is the 
estimate of probability (relative weight) of finding the error-free running time within a certain time period 
obtained as a result of processing the experts’ opinions rather than mathematically on the basis of the 
statistic data on frequency of failures getting into this time period as it happens in case of objective 
probability.  
 
Greater values of )(Z zµ  correspond to the states conforming, to greater extent, to the meaning of the 
chosen indistinct variable (i.e., with a greater possibility of finding the component’s error-free running 
time in these state and time period). 
 
As usually 4≥n , the approximated method (Melikhov, Bershtein, Korovin, 1990) is recommended for 
finding the normalized maximum characteristic vector. To do this, introduced is normalized characteristic 
vector )1()( −= rr Bqq of the paired comparisons matrix where r  is the No. of the approximate 
computation algorithm’s step.  
Then, let us assume that the relative weights are represented by the constituents of the normalized vector 
at the r -th iteration step determined from the formula 
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till reaching preset accuracyε . The required accuracy of calculation of the characteristic vector 
constituents is preset beforehand (henceforth we accept ε = 0.0001 for further computations) and the 

calculation is stopped at step r if n conditions  ε≤−
∧−∧ r

i

r

i qq
1

 i∀ are satisfied. 

 
 
4. Procedure of expert evaluation and interpretation of its results 
It is expedient to begin expert evaluation by the selected method from plotting the function of the possible 
error-free running time’s membership in the fuzzy set, whose meaning is formalized by the first indistinct 
variable. To do this, first one should indicate the range of the component’s possible error-free running 
time: monad ntt ,,0 ∆ expected in the initial approximation. Paired comparisons matrix B is obtained by 
way of interrogating the experts on the extent, to which, in their opinion, state i corresponds to the 
meaning of the “Possible error-free running time” indistinct variable more than state j. When matrix B is 
filled in, the expert compares, with the aid of the scale developed by T. Saaty (Saaty, 2008) (Table 1), all 
pairs of discrete states with respect to a possibility of the component failure in them. So, to allot marks bij, 
the expert actually compares the expected densities of probability of finding the error-free running time 
(frequency of failures) during various time periods. 

 
Table 1. Modified paired comparisons scale developed by T. Saaty 
 

Preference  
degree ijb  Definition  Explanation 

1 States are 
equally likely 

Possibility of finding the (average or most probable)*

2 

 component’s error-free running time 
in both time periods of the compared pair is similar 

Intermediate meaning 

3 Poor   
superiority 

The expert’s experience makes it possible to consider the possibility of finding the 
(average or most probable)* component’s error-free running time in the first time period of 
the pair somewhat higher than in the second one 

4 Intermediate meaning 

5 Strong 
superiority 

The expert considers that the possibility of finding the (average or most probable)* 
component’s error-free running time in the first time period of the pair is definitely higher 
than in the second one 

 

                                                            

* Here and hereinafter in Table 1 the text in brackets pertains to either second or third indistinct variable. 
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Table 1 (continued) 
 

Preference  
degree ijb  Definition  Explanation 

6 Intermediate meaning 

7 Apparent  
superiority 

The expert considers that the possibility of finding the (average or most probable)* 
component’s error-free running time in the first time period of the pair is apparently higher 
than in the second one, while the available statistics of failures of the analyzed 
components under the similar conditions, as well as the model calculations conform this 
fact 

8 Intermediate meaning 

9 Absolute  
superiority 

The expert has no doubts with respect to the fact that the possibility of finding the 
(average or most probable)* component’s error-free running time in the first time period of 
the pair is absolutely higher than in the second one 

 
As a result of processing matrix В we shall obtain function )(Z zµ  of the error-free running time’s 

membership in fuzzy set Z~ , the meaning of which is formalized by indistinct variable “Possible error-free 
running time”. The membership function is formed by the membership degrees, which can be represented 
by the components of the normalized maximum characteristic vector of matrix В. Let us interpret this 
function of this function as the bar chart of the observed random value of the component’s error-free 
running time, including the error of its expert evaluation. This bar chart can help determining the kind and 
parameters of the observed distribution of error-free running time and, in particular, giving an 

approximated estimate of observed average error-free running time ∑
=

⋅=
n

z
cp zfzm

1
)(~'~ and observed error-

free running time dispersion ( )∑
=

⋅=
n

z
cp (z)fmz-s

1

22 ~'~)'( . 

 
By changing over to t according to (1), we shall respectively obtain 
 

∑
=

⋅=
n

z
zcp zftt

1
)(~'~                                                             (2)  

and 

( ) ( )∑
=

⋅−=
1

1

22 ~'~'
n

z
cpt (z)ftts ,                                                   (3) 

 
where zt  is the error-free running time meaning corresponding to the middle of the z-th time period. 
 
 
Example 1. 
 
The expert is asked to evaluate the component’s error-free running time in seven time periods, each 2 
years long, beginning from the 6th year of its operation. Paired comparisons matrix В from the expert’s 
judgments pertinent to distribution of the possible component’s error-free running time is shown in 
Fig. 1(а). 
 
Determine the type and parameters of the form of the expected error-free running time. 
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                                (a)                                                                      (b) 
 

Figure 1. Paired comparisons matrix of possible component’s error-free running time (a)  
and respective bar chart of observed error-free running time (b). 

 
 
Solution: 
 
As a result of processing matrix 1B we use the approximative method to obtain the components of 
normalized characteristic vector zq , having the meaning of relative weights (probabilities) of finding the 

component within certain time periods z on time axis t, i.e. bar chart )(~ zf of the component’s error-free 
running time in Fig. 1(b). 
 
The average error-free running time is found from formula (2) and amounts to cpt '~ = 7·0.164 + 9·0.475 + 
11·0.140 + 13·0.112 + 15·0.052 + 17·0.032 + 19·0.025 = 10.22 years, while the root-mean-square 
deviation with allowance for (3) amounts to 'ts  = 3.99 years.  
 
The type of a priori distribution of error-free running time corresponding to the bar chart obtained by the 
expert method can be determined by various methods: method of moments, with the aid of statistical 
criteria, etc.  However, the use of known goodness-of-fit tests (Pearson’s, Kolmogorov’s, Shapiro’s, 
Wilk’s, Bartlett's test, Mann’s, etc.) requires getting the answer to the question: to which number of 
statistic observations do the results of expert evaluation of the error-free running time by the group of 
experts correspond? Therefore, let us use the method of moments.  
 
When balancing the “statistical” rows by this method, use is often made of the system of Pearson 
curves (Mitropolsky, 1971). The values of the coordinates obtained in the form of distribution bar chart 

)(tfT  in the diagram (Fig. 2) make up 1β = 1.641  and 2β = 4.250. So, the distribution of error-free 
running time by the expert method obtained can be adjusted by distribution from the family of J-shaped 
beta distributions (Fig. 2). 
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Figure 2. Location of obtained distribution on diagram of distributions of family of Pearson curves. 
 

 
Now let us consider the “Expected error-free running time” indistinct variable and indicate to the experts 
the range of its possible values 222 ,, ntt ∆  with the aid of information on cpt '~  and bar chart )(~ tfT . 
During the repeated evaluation the experts compare the pairs of possible time periods with respect to the 
possibility of finding the average error-free running time within them. As a result of processing paired 
comparisons matrix 2B formed in such a manner, we shall obtain bar chart )(~

2 zf  with discrete random 
value Z2 of the average error-free running time (Fig. 3 b). This bar chart is helpful in specifying the 
estimate of the average error-free running time:  
 

∑
=

⋅=
2

1
2 )(~~ n

z
zcp zftt                                                                   (4) 

 
and obtain the dispersion of its evaluation  
 

( )∑
=

⋅=
2

1
2

22 ~~n

z
cpzcp (z)ft-ts .                                                              (5) 
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Example 2. 
 
Basing on the data of Example 1 for assessing the average error-free running time, let us choose 52 =n  
time periods, beginning from the 9th year of the component’s operation, half a year long each. Obtained as a 
result of expert evaluation is paired comparisons matrix 2B  for a possibility of finding the average error-
free running time within these time periods (Fig. 3 b).  
 

 
                                     (a)                                                                          (b) 

 
Figure 3. Paired comparisons matrix (а) and bar chart of average error-free running  

time (b) obtained as a result of expert evaluation. 
 
 
It is necessary to determine the component’s average error-free running time and accuracy of its 
evaluation by the expert. 
 
Solution: 
 
Let us obtain the bar chart of the average error-free running time (Fig. 3 b) by the approximative method.  
Take estimation of expectation ][ 2ZMmcp = of discrete random variable 2Z  as the average error-free 
running time. While changing over to variable t , we obtain the specified estimate of the average error-
free running time 
 

∑
=

⋅=
2

1
2 )(~~ n

z
zcp zftt = 9.25·0.089 + 9.75·0.175 + 10.25·0.404 + 10.75·0.229 + 11.25·0.103 = 10.29 years. 

 
The root-mean-square deviation of this estimate with allowance for (5) will amount to 0.15 year. 
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The values of the coordinates for the system of Pearson curves determined from bar chart )(2 tf  make up 

1β = 0.010 and 2β = 2.553 (see Fig. 2). Their position in the diagram shows that the   distribution of the 
average error-free running time estimate obtained by the expert method is predictably close to the normal 
one.   
 
So, as a result of expert evaluation with the aid of the first indistinct variable, when the experts compare 
the selected time periods with respect to the possibility of the component’s failure during it, bar chart 

)(~ tfT of the component’s error-free running time was obtained and, with its aid of the information on 
dispersion of the component’s error-free running time. However, the measurement errors are imposed on 
the results of expert evaluation of the error-free running time.  
 
The expert (by convention, a highly knowledgeable specialist) acts as a “measuring instrument” for expert 
evaluation. Therefore, bar chart )(~ tfT  describes observed component’s error-free running time 'T  
obtained with the aid of expert evaluation. Let us assume that the dispersion of the error-free running time 
with respect to the average value determined by the expert method includes two additive constituents: 
 

e∆+∆=∆' ,                                                                   (6) 
 

where ∆  is the actual dispersion of the error-free running time, which should be taken into account in 
determining the component’s reliability indicators; ∆e is the expert evaluation error. 
 
The problems of accuracy of the expert methods are discussed in (Litvak, 2004). However, to assess 
accuracy, use is made, as a rule, of indirect indicators not relying on the characteristics employed in the 
theory of accuracy. It is obvious that accuracy of expert  evaluation  of the component’s error-free 
running time depends on the quality of experts, namely, their competence, objectivity, and information 
awareness. The a priori and a posteriori assessment of the expert (Litvak, 2004) can be done with the aid 
of usually interrelated indicators:  
 
− “ w e i g h t ”  of the expert  normalized with respect to other experts under a certain rule  

( the expert’s “weight” depends on his education, academic degree, knowledge of physics of the 
component’s failures, practical experience in determination of the reliability indicators) and set by the 
decision of the “absolutely competent” person – a priori estimate;  

− accuracy of the est imates made by the experts  – a posteriori estimate.  
 
If we consider the expert to be the measuring instrument, to analyze accuracy of expert evaluation, 
generally accepted metrological performances serve turn. Of them the most universal one is root-mean-
square deviation eσ  of the “measurement” result relative to the true (or average – in the absence of 
systematic errors) meaning. Accuracy of the estimates expressed in terms of value eσ can be determined 
by the following methods: 
 
− by deviations of the expert estimates from the true meaning. This method is implemented by testing 

the experts on the problems with the a priori known result or with the result instrumentally 
(statistically) determined after expert evaluation. The method advantage consists in exclusion of 
systematic errors, while the disadvantage, in considerable expenses; 

− by means of the dispersion characteristics (“concentration”) of the obtained expert estimates relative 
to the true (average) meaning. This method is also applicable in the situations, when the true state of 
the object being evaluated is unknown, but it does not take into account possible systematic errors. 
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The disadvantage of both methods consists in the necessity of a certain sample for finding the dispersion. 
 
Let us assume that the characteristic of accuracy of expert evaluation of the error-free running time under 
the second method is represented by the root-mean-square deviation in determining a certain fixed state 
[14]. We shall consider the average error-free running time as such a state in the problem being solved. 
The method advantage consists in the fact that it is obtained in case of determining a single considered 
component. The more contradictory and inconsistent the expert’s judgment on the possible component’s 
state, the higher the value of eσ . As the dispersion meaning depends on the expert’s quality, therefore it 
can serve as the measure of this quality.  
 
Under the conditions of the considered example eσ = sav= 0.15 year. 
 
If the expert evaluation error is known, in some cases it can be taken into account. On the condition of 
satisfying supposition (6) 
  

e∆−∆=∆ ' . 
 
Allowance for the errors introduced by the expert is possible by way of correcting the parameters of the 
shape of distribution often functionally bound with the value ofσ . Table 2 contains certain distributions 
of the error-free running time with indication of correlations required to eliminate the measurement 
errors.  

 
Table 2. Correlations for elimination of expert evaluation error for certain distribution laws of error-free 
running time.*

Distribution law 

  
 

Kind of F(t) Correlation for correcting the form 
parameter 

Uniform 
ab

a

tt
tt
−
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cpa tt σσ −−=  
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Unimodal 
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
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Unimodal with positive skew 
α- distribution 
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* The following designations are taken in Table 2: ( )⋅Φ  is the Laplace's function; m = M[T] is the expectation; a, b, 
and c are the scale, form, and shift of the Weibull distribution, respectively; v is the coefficient of variation, 

να 1
0 =

; 

ta, tb  are the uniform distribution parameters; ty lg= ; ][lgTMmy = ; 21][lgTDy =σ ; 21]'[lg' TDy =σ ; 21][lg ээ
y D ∆=σ . 
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5. Conclusion 
The suggested approach makes it possible to improve the extent of justification of setting the a priori 
distribution of the components’ error-free running time for provision of acceptable accuracy of 
determination of reliability indicators for high-reliability components. 
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