
 
ISAHP 2001, Berne, Switzerland, August 2-4, 2001 

 
 

PROBABILISTIC CONSIDERATIONS OF THE CONSISTENCY INDEX 
IN RECIPROCAL MATRICES 

 
 

Luis G. Vargas 
The Joseph M. Katz Graduate School of Business 

University of Pittsburgh 
Pittsburgh, PA  15260 

lgvargas@pitt.edu 
 
 
Keywords: consistency, consistency ratio, random judgments, statistical consistency 
 
Summary:.    When checking the inconsistency level of a positive reciprocal matrix there are two 
parameters used, a benchmark, the average, and a consistency level, usually 10 percent.  We show results 
from a simulation experiment with 100,000 positive random reciprocal matrices of size varying from 3 to 
15  that support the use of both the average and the 10 percent consistency level.  In addition, a statistical 
hypothesis test is developed.  
 
1. Introduction 
 

As in physical problems where there are two ways to investigate metric properties of a system: 
deterministic and probabilistic, one would like to assume that those very two ways of thinking also apply to 
order properties.  Some investigators (e.g., Crawford, 1987)  have used the statistical approach to derive the 
best fit vector w for a positive reciprocal matrix of paired comparisons A using the logarithmic least squares 
metric which yields the maximum likelihood estimator of w. The outcome is a vector whose components 
are the geometric mean of the rows of A. This result coincides with the principal eigenvector for 3n ≤  but 
deviates from it for . The geometric mean is based solely on metric closeness without regard to 
dominance, which is the essential property one is attempting to capture by taking powers of the matrix.  
When the matrix A is consistent, the two outcomes coincide for all n because 

3n >

1n nA n A−=  and powers of A 
coincide with A to within a multiplicative constant.  However, it is when A is inconsistent that the two 
differ, and the greater the inconsistency the less the geometric mean captures order. The strength of the 
statistical approach is that given partial information (the sample), and under some specific assumptions 
about the population from which a sample is selected, we can infer something about the parameters of the 
statistical population through hypothesis testing.  These inferences assume that either we know the 
probability distribution of the population of interest, or the behavior of the parameters that need to be 
estimated is well defined.  For example, when doing hypothesis tests about means, either we assume that 
the population is normal, or that the sample size is sufficiently large so that the central limit theorem can be 
invoked. The same problem arises when studying consistency. To study it from a probabilistic point of 
view we first need to characterize the population from which consistency is obtained.  To study it from the 
deterministic point of view we need to set what we consider to be an acceptable level of inconsistency.  
This level need not be closely related to the level one would obtain from the statistical approach as we shall 
see below. One thing seems to be clear, what one learns from probability is less cogent as one moves away 
from consistency as we shall also see.  

 
In the Analytic Hierarchy Process scales are built from priorities derived from judgments represented 

with pairwise comparisons.  These pairwise comparisons are obtained by comparing two elements from a 
set of elements according to a criterion.  Each criterion yields a set of pairwise comparisons arranged in a 
matrix. It is assumed that the judgments satisfy the reciprocal property, i.e., if  represents how strongly ija
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element i is preferred to element j, then 1/ji ija a= .  If in addition to the reciprocal property, the judgments 
satisfy the relationship: 

ikjkij aaa =

max

1
n

n
λ

µ
−

−

1/ 2
1/ 2






 , for all i, j and k (1) 
then we say that the judgments are consistent.  Consistency is necessary but not sufficient to make the 
priorities derived from the judgments valid in practice.  To measure inconsistency, Saaty [1980] developed 
an index based on the principal eigenvalue of the matrix of pairwise comparisons. 

Let A = {  be a reciprocal matrix of order n.  Let }ija maxλ  be the principal eigenvalue of A.  It is 

known that if (1) holds, that is, A is a consistent matrix, then  maxλ = n, and that in general ≥maxλ  n.  
Since the trace of the matrix is equal to the sum of its eigenvalues, we have  

 
max

1
1

i

in
λ λ

λ−
≠

≡ = ∑  . (2) 

Thus, the index µ measures the average inconsistency in a reciprocal matrix of judgments.  This index on 
its own has no meaning unless we compare it with some benchmark to determine the magnitude of the 
deviation from consistency. 
 

A simple rule of thumb proposed by Saaty [1980], and justified in terms of orders of magnitude, is that 
the ratio of µ to the average of the same index from randomly generated reciprocal matrices (called the 
consistency ratio, CR) should be less than 10 percent.  For example, consider the following 3-by-3 
reciprocal matrix: 

1 2 2
1 2

1/ 2 1






. 

that has a CR = 0.052.  This matrix is not consistent. However, the consistency ratio CR indicates that the 
inconsistency is acceptable (CR <0.10). According to Golden and Wang (1989), the problem with the 10 
percent rule is that it is too restrictive for values of n > 3 (see Table 1, column 4).  Because of this, they 
state that the consistency index must be a function of the matrix size.  
 

In this paper we show that because individuals do not provide judgments at random, even when they 
do not have enough information, that the 10 percent rule is appropriate and that the average benchmark is 
acceptable. The 10 percent rule does not refer to the randomness of the judgments. It is a deterministic 
approach. From a probabilistic point of view, the question is: Is there a value of µ to be considered natural 
and beyond which the judgments can be considered random?  Note that randomness is not the same as 
inconsistency, and hence, the 10 percent rule cannot be used to test randomness.  For this purpose we need 
a new statistical test also based on the concept of consistency ratio. 

 
Table 1: Sample results (m=100,000) 
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n s
3 0.493583 0.66005 0.22430
4 0.825265 0.600793 0.03596
5 1.03846 0.494065 0.00300
6 1.17146 0.397672 0.00010
7 1.25865 0.327452 0.00001
8 1.31826 0.27803 0.00000
9 1.3641 0.236991 0.00000
10 1.41009 0.209089 0.00000
11 1.4349 0.186182 0.00000
12 1.45621 0.168613 0.00000
13 1.47205 0.15355 0.00000
14 1.48551 0.140442 0.00000
15 1.49788 0.129745 0.00000

ϖ P[ℜ < 0.10]

 
 
 
2. Simulation Results 
 

Let { },1ijX i j n≤ < ≤  be a set of independent identically distributed random variables with 

probability mass function given by:  
1
17[ ]

1
ijP X k

i j n

= =

≤ < ≤
, 1 1

9 2, , ,1,2 ,9k = K K . 

 
Let  for all i and j.  Let 1−= ijji XX maxΛ  be the random variable corresponding to the principal 

eigenvalue of random reciprocal matrices whose entries are the variables { }, 1ijX i j n≤ < ≤ , let 

max

1
n

n
Λ −

−nΩ ≡ , and let E[Ωn] = nµ . Let 
[ ]

n

nEn
Ω

ℜ ≡
Ω

 be the random variable corresponding to the 

consistency ratio CR.  In Table 2 we give the empirical values of nℜ  for percentiles ranging from 1 to 99.  

In Figure 1 we plot the critical values of nℜ  versus the matrix size.    

Table 2: Empirical Percentiles of the Consistency Ratio nℜ   for Different Size Matrices 
MATRIX SIZE

Percentile 3 4 5 6 7 8 9 10 11 12 13 14 15
0.01 0.000 0.043 0.150 0.277 0.401 0.497 0.583 0.642 0.691 0.724 0.754 0.777 0.794
0.05 0.004 0.125 0.275 0.432 0.559 0.642 0.708 0.751 0.782 0.807 0.826 0.843 0.855
0.1 0.019 0.195 0.375 0.542 0.655 0.724 0.775 0.807 0.833 0.851 0.866 0.878 0.888
0.25 0.136 0.388 0.619 0.758 0.822 0.859 0.884 0.900 0.913 0.923 0.930 0.936 0.943
0.5 0.441 0.824 0.983 1.004 1.006 1.005 1.004 1.002 1.002 1.001 1.000 1.001 1.001
0.75 1.256 1.501 1.346 1.242 1.182 1.146 1.119 1.103 1.089 1.079 1.071 1.064 1.059
0.9 3.021 2.089 1.644 1.442 1.334 1.269 1.221 1.189 1.165 1.148 1.134 1.121 1.111
0.95 4.207 2.386 1.812 1.554 1.418 1.340 1.280 1.240 1.211 1.188 1.172 1.155 1.142
0.99 5.757 2.886 2.100 1.753 1.574 1.464 1.390 1.335 1.294 1.261 1.239 1.216 1.198

 
Figure 1 shows that as the matrix size increases, randomly generated reciprocal matrices become more 
naturally inconsistent until the inconsistency seems indistinguishable from the average random inconsistency.  
Thus, if we make no effort to think about the judgments, the inconsistency of the matrix should be around the 
average inconsistency.   
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Figure 1. Critical Values of nℜ  vs. Matrix Size (n) for Different p-values 

These results would suggest that when individuals compare larger and larger sets of elements, their natural 
inconsistency level is almost the same as the random inconsistency level.  However, we have observed, 
quite the opposite effect in practice.  Considered the following reciprocal matrix: 

1 5 3 7 6 6 1/ 3 1/ 4
1/ 5 1 1/ 3 5 3 3 1/ 5 1/ 7
1/ 3 3 1 6 3 4 6 1/ 5
1/ 7 1/ 5 1/ 6 1 1/ 3 1/ 4 1/ 7 1/ 8
1/ 6 1/ 3 1/ 3 3 1 1/ 2 1/ 5 1/ 6
1/ 6 1/ 3 1/ 4 4 2 1 9 1/ 6

3 5 1/ 6 7 5 5 1 1/ 2
4 7 5 8 6 6 2 1

 
 
 
 
 
 
 
 
 
 
 
  

 

whose consistency ratio CR=0.379.  According to the results in Table 2, this matrix should be considered 
consistent because the chances that this matrix is obtained at random is less than 1 percent.  According to 
Saaty’s rule this is not the case. 

Definition (Saaty): A positive reciprocal matrix A is almost consistent if  ( ) 0.1
n

µ
µ

<
A  

Following a statistical approach, the matrix of judgments  is now the sample, and we must decide if its 
consistency level (the statistic) is statistically acceptable.  Thus, given a positive reciprocal matrix A with 
consistency index µ(A), to test if µ(A) is statistically significantly different that 0.1 nµ , we need to test the 

hypothesis : nµ µ ε≤oH , where 0.1ε = .  The p-value corresponding to this hypothesis is given by 

p-value = ( )
n

n
P µ

µ ε
 
ℜ > 
 

A . 

 If the p-value is small, then we would fail to accept the null hypothesis, : nµ µ ε≤oH , and we could infer 

that the judgments provided lead to an inconsistency larger than nµ ε , the expected level.  This formulation 
suggests that instead of comparing the consistency of a matrix with the average consistency we could also 

compare it with some other percentile of the distribution of max

n 1
n

n
Λ −

Ω ≡
−

, e.g., the 95th percentile?  This 

question is meaningful because as shown in Table 1, the consistency ratio is significantly larger than 0.10 
for values of n>4. 

Let ,nm α  be a value of max

1n
n

n
Λ −

Ω ≡
−

 such that ,[ ]n nP m α αΩ > = .  Let ,
,

n
n

nmα
α

Ω
≡M . 
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Definition: A positive reciprocal matrix A is almost consistent at the α  level if 
,

( )

nm α

µ ε<A . 

Definition: A positive reciprocal matrix A is said to be statistically consistent at the α  level if the null 
hypothesis  ,: nm αµ ε≤oH  cannot be rejected. 
 
Lemma: An almost consistent matrix at theα level is always statistically consistent at theα level . 
 

Proof: If A is almost consistent then 
,

( )

nm α

µ ε<A  or 
,

( ) 1
nm α

µ
ε
<

A  and hence,  

, ,
, ,

,

,

( ) ( )1

1 1

1

n n
n n

n

n n

P P
m m

P

P m

α α
α α

α

α

µ µ
ε ε

α

  
> = − ≤  

    
 > − ≤ 

 = Ω ≤ 
= −

A AM M

M





. 

 
and we would accept the hypothesis ,: nm αµ ε≤oH  if α. is sufficiently large. 

Recall that ,[ ]n nP m α αΩ > = , and if we use of the average as the benchmark, then  the values of α 
are large, 

Matrix Size Mean α = [ ]n nP µΩ > * 
3 0.493583 0.3412 
4 0.825265 0.3941 
5 1.03846 0.4299 
6 1.17146 0.4510 
7 1.25865 0.4633 
8 1.31826 0.4708 
9 1.3641 0.4763 

10 1.39723 0.4798 
11 1.42524 0.4825 
12 1.44724 0.4845 
13 1.46484 0.4860 
14 1.47906 0.4873 
15 1.49234 0.4884 

* The probabilities [ n nP ]µΩ >  have been estimated 
using the distributions derived in the next section. 

 
3.  The Theoretical Probability Distribution of nΩ  

Because numerical goodness-of-fit tests tend to be very restrictive as the sample size increases, we use 
a quantile plot to test for the distribution of nΩ .  We empirically observe that the gamma random variable 

provides close estimates of both the mean and the standard deviation of nΩ .  Figure 2 shows the 
comparisons for n=3.  Table 3 gives the parameters of the gamma random variables, the theoretical mean 
and standard deviation, and the sample mean and standard deviation.  

 
Table 3. Probability Distribution of nΩ . 
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Gamma
n alpha beta E[X] stddev(X) sample mean sample std.dev.

3 0.586355 1.15971 0.505605 0.660284 0.493583 0.66005
4 1.56954 1.90178 0.825301 0.658758 0.825265 0.600793
5 3.59988 3.46654 1.038465 0.547328 1.03846 0.494065
6 7.37915 6.29909 1.171463 0.431246 1.17146 0.397672
7 13.1702 10.4638 1.258644 0.346822 1.25865 0.327452
8 20.6816 15.6885 1.318265 0.289875 1.31826 0.27803
9 31.3003 22.9457 1.364103 0.243822 1.3641 0.236991

10 43.2073 30.9236 1.397227 0.212563 1.39723 0.208168
11 57.4517 40.3101 1.425243 0.188035 1.42524 0.185151
12 72.8596 50.3427 1.447272 0.169554 1.44724 0.167415
13 89.8307 61.3248 1.464835 0.154553 1.46484 0.153178
14 109.878 74.2892 1.479058 0.141101 1.47906 0.13999
15 131.091 87.8428 1.492336 0.130341 1.49234 0.129487  

 
As can be seen in Figure 2, other distributions such as the normal and the lognormal do not seem to fit as 
well as the gamma distribution for values of n<7.  However, the Weibull distribution seems to fit just as 
well. Tables 4-10 give estimates of the percentiles obtained using Weibull and Gamma distributions as well 
as the average absolute percent deviation for n=3,5,7,9, 11, 13 and 15. 
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Gamma Distribution
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Figure 2. Normal, lognormal and gamma approximations of nΩ  
 

Table 4. Approximation by Weibull and Gamma for n=3 
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Absolute % Deviation
CDF Weibull Gamma Empirical Weibull Gamma

0.01 0.000564 0.000276 0 N/A N/A
0.05 0.005784 0.004301 0.001847 213.12% 132.82%
0.1 0.016167 0.014128 0.009147 76.74% 54.44%

0.25 0.06784 0.070198 0.067805 0.05% 3.53%
0.5 0.238117 0.261633 0.217845 9.31% 20.10%

0.75 0.640634 0.683937 0.61559 4.07% 11.10%
0.9 1.32205 1.32177 1.4861 11.04% 11.06%

0.95 1.92499 1.83445 2.08333 7.60% 11.95%
0.99 3.55685 3.07693 2.8459 24.98% 8.12%

Average 43.36% 31.64%  
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Table 5. Approximation by Weibull and Gamma for n=5 
Absolute % Deviation

CDF Weibull Gamma Empirical Weibull Gamma
0.01 0.149248 0.190021 0.155464 4.00% 22.23%
0.05 0.309825 0.328546 0.285502 8.52% 15.08%
0.1 0.427763 0.427261 0.389327 9.87% 9.74%

0.25 0.67094 0.637046 0.642998 4.35% 0.93%
0.5 0.994997 0.944053 1.02066 2.51% 7.51%

0.75 1.35743 1.33768 1.39773 2.88% 4.30%
0.9 1.70397 1.77232 1.70751 0.21% 3.80%

0.95 1.91723 2.07086 1.88131 1.91% 10.08%
0.99 2.32464 2.71184 2.18171 6.55% 24.30%

Average 4.60% 9.46%  
Table 6. Approximation by Weibull and Gamma for n=7 

Absolute % Deviation
CDF Weibull Gamma Empirical Weibull Gamma

0.01 0.475979 0.593908 0.504175 5.59% 17.80%
0.05 0.69449 0.747413 0.703095 1.22% 6.30%
0.1 0.820592 0.839624 0.824073 0.42% 1.89%

0.25 1.03572 1.0107 1.03449 0.12% 2.30%
0.5 1.26988 1.22694 1.26661 0.26% 3.13%

0.75 1.49121 1.47208 1.48818 0.20% 1.08%
0.9 1.67732 1.71852 1.67863 0.08% 2.38%

0.95 1.78282 1.87808 1.78526 0.14% 5.20%
0.99 1.96966 2.20246 1.98082 0.56% 11.19%

Average 0.38% 4.18%  
 
 

Table 7. Approximation by Weibull and Gamma for n=9 
Absolute % Deviation

CDF Weibull Gamma Empirical Weibull Gamma
0.01 0.712058 0.861571 0.795691 10.51% 6.59%
0.05 0.918979 0.98931 0.966498 4.92% 2.28%
0.1 1.02857 1.06244 1.05701 2.69% 0.54%

0.25 1.20367 1.19271 1.20631 0.22% 1.36%
0.5 1.38128 1.3496 1.36908 0.89% 1.95%

0.75 1.53956 1.5197 1.52652 0.85% 0.68%
0.9 1.6668 1.68441 1.66584 0.06% 1.86%

0.95 1.73689 1.78836 1.74618 0.53% 4.22%
0.99 1.8578 1.99444 1.89576 2.00% 9.87%

Average 1.52% 2.84%  
Table 8. Approximation by Weibull and Gamma for n=11 

Absolute % Deviation
CDF Weibull Gamma Empirical Weibull Gamma

0.01 0.87032 1.02438 0.984301 11.58% 4.07%
0.05 1.05698 1.13068 1.11517 5.22% 1.39%

0.1 1.15169 1.19024 1.18702 2.98% 0.27%
0.25 1.2982 1.29437 1.30145 0.25% 0.54%

0.5 1.44169 1.41699 1.42817 0.95% 0.78%
0.75 1.56588 1.54712 1.55153 0.92% 0.28%

0.9 1.66352 1.67084 1.66083 0.16% 0.60%
0.95 1.71654 1.74795 1.72548 0.52% 1.30%
0.99 1.80682 1.89892 1.84455 2.05% 2.95%

Average 2.74% 1.36%  
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Table 9. Approximation by Weibull and Gamma for n=13 

Absolute % Deviation
CDF Weibull Gamma Empirical Weibull Gamma

0.01 0.980137 1.12933 0.984301 0.42% 14.73%
0.05 1.14864 1.22022 1.11517 3.00% 9.42%
0.1 1.23199 1.27061 1.18702 3.79% 7.04%

0.25 1.35852 1.35787 1.30145 4.39% 4.34%
0.5 1.47991 1.45941 1.42817 3.62% 2.19%

0.75 1.58319 1.56588 1.55153 2.04% 0.92%
0.9 1.66334 1.66603 1.66083 0.15% 0.31%

0.95 1.70649 1.72797 1.72548 1.10% 0.14%
0.99 1.77942 1.84824 1.84455 3.53% 0.20%

Average 2.45% 4.37%  
 

Table 10. Approximation by Weibull and Gamma for n=15 

Absolute % Deviation
CDF Weibull Gamma Empirical Weibull Gamma

0.01 1.06706 1.2059 1.18537 9.98% 1.73%
0.05 1.2184 1.28462 1.27647 4.55% 0.64%
0.1 1.29189 1.32794 1.32517 2.51% 0.21%

0.25 1.40192 1.4025 1.40657 0.33% 0.29%
0.5 1.50591 1.48854 1.49308 0.86% 0.30%

0.75 1.59329 1.57805 1.58016 0.83% 0.13%
0.9 1.66045 1.66161 1.65769 0.17% 0.24%

0.95 1.69639 1.713 1.70348 0.42% 0.56%
0.99 1.75679 1.81223 1.78741 1.71% 1.39%

Average 2.37% 0.61%  
 

For n≥7,  also fits a normal random variable.  Let A=(nΩ i
ij ij

j

wa
w

ε≡ ) where w = (  is the 

principal right eigenvector of A.  It can be easily shown that  

)iw

max
( 1)

12

1 ( )
1 n n

i j

n
n

λ
n i

n
j jiµ ε

≤

ε−
≤ <

−
≡ = +

− ∑

n

, 

and hence, the consistency index is the average of a set of random variables.  By the Central Limit 
Theorem, for n sufficiently large, in this case, n(n-1)/2 , the distribution of Ω approaches a normal. 

Matrix Size
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Figure 3.  Distribution of the Consistency Index nΩ  
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In Figure 4 we show some of the graphical tests of normality conducted. 
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Normal Distribution
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Figure 4. Quantile Plot of the consistency index for n=7 and n=15. 

 
 
4. Consistency Ratios Based on Percentiles 
 

Testing the hypothesis ,: nm αµ ε≤oH  requires the computation of  

p-value = ,
,

( )
n

n
P

mα
α

µ
ε

 
> 

  

AM . 

The p-value, for the distributions at hand, is a monotonically decreasing function of the level α.  Thus, if  

,nm α nµ≥ , then ,[ ] [n n nP m Pα ]nµΩ > ≤ Ω > , and using a percentile greater than the average means 
that we are willing to accept more inconsistency.  So, the question is:  Which percentile is more 
appropriate?  Note that for n≥7  the distribution of the consistency index is a Normal.  Figure 3 shows the 
density functions of the gamma random variables estimated from the data.  For n ≥ 7, has the shape of a 
Normal.  Quantile plots confirm this fact (see Figure 4 for n=7 and n=15).  As n increases it is clear that the 
standard deviation of the consistency index decreases (see Figure 5), thus, for n≥7  the best and easier 
percentile to use is the average.   For n≤7, there does not seem to any particular reason why the average 
does not give good results.  To illustrate the behavior of other percentiles, and in particular the 95

nΩ

th 
percentile of  we use some examples. nΩ

Log probit model: Y = normal(1.5763 -1.02018 *ln(n))
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Figure 5. ( n )σ Ω  as a function of the matrix size n  
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5. Examples 

 
Consider the following reciprocal matrices: 

(1) 
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




,CR = 0.005 (consistent),  1 2 5
1/ 2 1 2
1/ 5 1/ 2 1






p-value ( 3µ )= 0.794  (statistically consistent),  
p-value(95th percentile) = 0.864 (stat. consistent)   

(2) 
, CR =
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 
 
 
 
 
 
 
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 
  
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6. Conclusions 
 

In this paper we provide a statistical test of consistency to decide if the judgments of a positive 
reciprocal could be considered statistically consistent. The test is based on two parameters, a percentile 
( m ,n α ) and a consistency level (ε).  This test is equivalent to the 10 percent rule.  Because the level of 
inconsistency of randomly generated positive reciprocal matrices tends to stabilize around the average 
inconsistency (see Figure 3), it is appropriate to use the average as the benchmark of the test.  The choice of 
consistency level, ε,  is equivalent to the choice of a significant level in a statistical test, and hence, 10 
percent is neither too strict nor too relaxed.  It is just right! 
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