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Summary: The objective of this study is to find the scale of the Analytic Hierarchy Process (AHP) 
appropriate for representing decision maker’s perception. Specifically, two scales, linear scale and power 
scale, employed in the pair-wise comparison of the AHP are evaluated. The results offer some evidence 
that the power scale is preferable to the linear scale as the judgment scale. 
 
 
1. Introduction 
 
One of the most popular methods for decision making has been the Analytic Hierarchy Process (AHP) 
developed by Thomas L. Saaty (Saaty, 1977). The advantage to the AHP is that data on decision-makers’ 
(DMs) pair-wise comparisons are aggregated, and the degree of importance of each alternative is 
quantified. This quantification results in not only the identification of the most important alternative but 
also the ranking of all alternatives for each DM.  
 
Two issues surround the use of the AHP. The first issue occurs because the allowable upper bound of 
consistency index (CI) is 10% of the RI. Pair-wise comparison matrices with CIs greater than this critical 
value are therefore not accepted due to their inconsistency. Consequently, in case applying the AHP to 
questionnaire on public opinion, the more samples whose CI exceed the limit, the fewer the samples 
available for analysis (henceforth, CI problem). The second issue surrounding the AHP involves the range 
of aij, the relative weight of alternative i (i for short) to j. When the range of aij is expanded (reduced) 
from 1-9 to 1-15 (1-5), the Frobenius root and its corresponding eigenvector changes, resulting in the 
alternation of the direction of the eigenvector and the rank of the priority of alternatives (Schenkerman, 
1994) (henceforth, rank-reversal problem). 
 
In addition to the above two traditional issues, one additional problem must be noted. If the range of aij 
were to be too reduced, then CI would converge to 0, making it impossible for the AHP to discriminate an 
important alternative from others. Since discriminating the most important alternative is one of the 
principal purposes of the AHP, verifying how sensitively the AHP discriminates an important alternative 
from others when aijs are scattered is essential (henceforth, discriminating-sensitivity problem). 
 
In the AHP, a pair-wise comparison and a scale used in its procedure play a key role quantifying each 
DM’s feeling; therefore, which scale should be used in the process of a pair-wise comparison is the most 
controversial issue concerning the refinement of this method. Indeed, the three aforementioned problems 
(the CI problem, the rank-reversal problem and the discriminating-sensitivity problem) are deeply related 
to the scale. The 1-9 linear scale, advocated by Saaty (Saaty, 1980) long considered the standard of the 
AHP, has been widely criticized in the literature, primarily because of the CI problem and the 
rank-reversal problem.  
 
To overcome the deficiencies of Saaty’s scale, various judgment scales for a pair-wise comparison have 
been proposed and evaluated to date. Aupetit and Genest proposed reducing the range of the linear scale 
to 1-5 (Aupetit and Genest, 1993); Harker and Vargas proposed extending the range of the linear scale to 
1-13 and 1-50 (Harker and Vargas, 1987). In addition to these linear scales, Harker and Vargas also 
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proposed two non-linear scales (quadratic and irrational) (Harker and Vargas, 1987). Lootsma claimed the 
superiority of the power scale to the 1-9 linear scale (Lootsma, 1989 and 1991). Saaty’s and Lootsma’s 
scales have often been compared and have generated much discussion. 
 
Saaty verified the effectiveness of his 1-9 scale through many physical experiments, each of which had a 
theoretical value (Saaty, 1983). The AHP, however, deals with decision making on subjective issues, 
making it difficult to determine theoretically whether or not each DM’s preference for alternatives derived 
from the AHP accurately represents each DM’s feeling. Taking into account the fact that the AHP deals 
with not only objective issues that can be quantified but also subjective issues that do not have theoretical 
values, the effectiveness of a scale must be verified empirically through actual applications to subjective 
issues. In this study, we focus on comparing the effectiveness of Saaty’s 1-9 linear scale and the power 
scale from the perspective of appropriateness for representing each DM’s perception, where the criteria of 
appropriateness are consistency, robustness with respect to the change of the range of a scale, and 
discriminating sensitivity.  
 
In this study, two types of data are used to evaluate the two scales. One is randomly generated data, five 
sizes of matrices (from 3×3 to 7×7) whose elements are generated in accordance with uniform 
randomness (random sample); the other is actual data, a matrix (4×4) whose elements are obtained from 
a 1997 survey of public opinion on the Japanese election results of October 1996 (actual sample). This 
election represented the first time the election law of the House of Representatives switched from a 
multi-member electorate system to a single-member electorate system. The survey was carried out four 
months following the election. The data obtained from this survey might thus be considered an accurate 
reflection of each respondent’s subjective judgment and serve as an ideal actual sample for evaluating 
scales used in a pair-wise comparison. 
 
 
2. Set-up for the empirical test 
 
2.1 Definition of the linear ant the power scales for a pair-wise comparison 
 
A scale employed in a pair-wise comparison can be defined as a function mapping the result of a 
pair-wise comparison between two alternatives to reciprocal value. Let I be a linearly symmetric 
interval, whose center (set as 0) represents two alternatives of equal importance with the magnitude of 
importance symmetrically distributed on both sides (set, + and -). Further let xij∈{-k, ..., -1, 0, 1, ..., 
k}⊂ I (xij + xji =0 and i, j = 1, ..., n) be pair-wise comparison data representing each result of pair-wise 
comparisons between an alternative i (i, for short) and j. If we describe the relative weight of i to j as aij, 
then a scale can be defined as the monotone, increasing function f: xij→aij, which satisfies f(xij)・f(xji)=1. 
 
Definition 1: Linear Scale 

          cxij+1         xij≥ 0  
fL(xij;c) =                         (for ∀ c>0 )                               (1) 

                  1/(-cxij+1)      xij < 0  
 
Definition 2: Power Scale  

fP(xij;m) = ijxm     (for m>1)                                                (2) ∀

 
Henceforth, we describe the pair-wise comparison matrix generated by the linear scale, fL(xij;c), as AL 
=(fL(xij;c)) and that generated by the power scale, fP(xij;m), as AP =(fP(xij;m))1. Saaty’s linear scale 
corresponds to the case k=8 for xij and c=1 in Equation (1); Aupetit-Genest’s linear scale corresponds to 
that of k=12 and c=1; and Harker-Vargas’s linear scale corresponds to that of k=8 and c=0.5. However, in 
the AHP, since Saaty’s 1-9 linear scale has been employed as a standard, we fix k=8 and c=1 for purposes 
of this study.  
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1 Lootsma employed the similar definition of the power scale; the pair-wise comparison data xij was set as 
xij∈{2k | k=0, ...,4} (Lootsma, 1991). 



In the definition of the power scale, the size of m greatly affects the results. If m→1, then a weight vector 
converges to 1/n・12, resulting in no useful information concerning the degree of importance of 
alternatives. In contrast, if m is set large, then the values of pair-wise comparisons diverge extremely or 
converge to 0, resulting in a deviation from individuals’ feelings. One reasonable way of setting m is to 
set the maximum of fP(xij;m) the same as that of fL(xij;1), which results in m8=9 (m 1.3161); however, 
under this condition, f

≅
P(xij;1.3161) < fL(xij;1) when 0 < xij < 8 because fP is a convex function. In this case, 

CI of AP =(fP(xij;m)) tends to be smaller than that of AL =(fL(xij;c)), making the comparison about the size 
of CI unfair. Therefore, in this study, we fix m(c), so as to satisfy the following equation: 

∫∫ =+
8 

0 

8 

0 
.  )1( dxmdxcx x                                                       (3) 

From Equation (3), the approximate value of m(1) is calculated as m(1)=1.3945. Henceforth, the constant 
c and m(c) are represented by 1 and m(1) respectively, and the functions fL(xij;c) and fP(xij;m) are described 
as fL and fP, for short. Insofar as the calculation of weight is concerned, we follow the eigenvalue method, 
because the weight calculated by the log-least-square method and that calculated by the geometric-mean 
method coincide (Crawford and Williams, 1985), and that the latter coincides the weight calculated by the 
eigenvalue method. 
 
2.2 Samples 
 
In this study, we use two qualitatively different types of data to evaluate the appropriateness of the two 
above-defined scales for representing each DM’s feeling. One type of data is randomly generated, five 
sizes of matrices (from 3×3 to 7×7) whose elements are generated in accordance with uniform 
randomness (random sample); the other is actual data, a matrix (4×4) whose elements are obtained from 
a 1997 survey of public opinion on the Japanese election results of October 1996 (actual sample). 
 
2.2.1 Random sample 
 
The random sample is generated in the following way. First, we select 20000 sets (5000 sets for 3×3 
matrix) of random pair-wise comparison data {xij}r (i, j =1, ..., h and h =3, ..., 7) from {-8, ..., -1, 0, 1, ..., 
8} in accordance with uniform randomness, and next map {xij}r by fL and fP, generating five types (from 3
×3 to 7×7) of reciprocal pair-wise comparison matrices AL and AP, respectively. In this study, these two 
sets of five types of 20000 matrices are defined as the random sample and used in the evaluation of fL and 
fP.  
 
2.2.2 Actual sample 
 
The actual sample is obtained from a 1997 survey of public opinion on the Japanese election results of 
October 1996. The total number of responses is 796 and the response ratio is 83.1%. In this survey, the 
following three questions are formatted in the AHP system:  

Q1: the criteria used in the choice of the candidate in the election  
Q2: the reason why respondents were non-partisan  
Q3: the criteria used in the choice of the candidate in the previous election in July 1993  

Each question asks respondents about subjective issues that could not be measured theoretically. In these 
questions, respondents are asked to conduct a pair-wise comparison of each criterion in accordance with 
the segmental method, where I ={-8, ..., -1, 0, 1, ..., 8}.  
 
The actual pair-wise comparison data {xij}d (i, j =1, ..., 4, xij∈ I) is mapped by fL and fP, generating a 4
×4 reciprocal pair-wise comparison matrix AL and AP, respectively. AL and AP are defined as the actual 
sample and used in the evaluation of fL and fP in this study. The size of the actual sample is 1409, which is 
the total number of qualified answers3 obtained from the above three questions.  
 

                                                        
2 a vector whose elements are all 1 
3 the CIs of the answers are smaller than 0.15 
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2.3 Testing item 
 
In this research, using the two types of samples defined in Section 2.2, we evaluated fL and fP from the 
following perspectives: distribution of CI, rank-reversal problem, and discriminating-sensitivity problem. 
 
 
3. Comparison between the linear and the power scales using the random sample 
 
3.1 CI 
 
Let rCIL(h) and rCIP(h) denote the CI obtained from the random sample, AL and AP, whose matrix sizes 
are h×h, respectively. Furthermore, let M(rCIL(h)) and M(rCIP(h)) denote the mean of rCIL(h) and rCIP(h), 
respectively, over the entire random sample. Table 1 summarizes m(c), M(rCIL(h)) and M(rCIP(h)) 
corresponding to each c=0.5, 1, 1.5, 2, 3, 4 and 5 in accordance with Equation (3). As can be seen, each 
pair of M(rCIL(h)) and M(rCIP(h)) was nearly equal. However, rCIL(h) and rCIP(h) had different distributions 
for each random-sample size h. Therefore, fL and fP could not be considered equivalent scales just because 
M(rCIL(h)) nearly equaled M(rCIP(h)). Thus, we focused on the top 1%, 3%, 5%, 7%, 10%,15%, 20% and 
25% values of rCIL(h) and rCIP(h), and defined the threshold point (T-point, for short) as the border value 
of each rCIL(h) and rCIP(h). As Table 2 shows, rCIL(h) > rCIP(h) held at almost all the T-points for each 
sample size h, implying that the CI of a pair-wise comparison matrix generated by fL was greater than that 
generated by fP for each T-point. In this study, fL and fP were evaluated based on this T-point. 
 
M(r CIL (h )) and M(r CIP (h )) Table 1

c 0.5 1 1.5 2 3 4 5
m (c ) 1.2687 1.3945 1.4792 1.5438 1.6406 1.7132 1.7717

M(r CIL (3)) 0.2378 0.5270 0.8106 1.088 1.627 2.153 2.668
M(r CIP (3)) 0.2511 0.5382 0.804 1.052 1.513 1.938 2.339
M(r CIL (4)) 0.3925 0.8996 1.400 1.916 2.945 3.968 4.984
M(r CIP (4)) 0.4028 0.9013 1.400 1.880 2.788 3.652 4.484
M(r CIL (5)) 0.4711 1.111 1.776 2.451 3.825 5.193 6.563
M(r CIP (5)) 0.5051 1.168 1.832 2.487 3.767 5.008 6.219
M(r CIL (6)) 0.5301 1.257 2.019 2.793 4.358 5.933 7.512
M(r CIP (6)) 0.5719 1.340 2.125 2.909 4.461 5.991 7.501
M(r CIL (7)) 0.6160 1.457 2.336 3.229 5.033 6.847 8.665
M(r CIP (7)) 0.6762 1.620 2.618 3.640 5.725 7.843 9.983

 
r CIL (h ) and r CIP (h ) corresponding to each T-point (c =1, m =m (1)) Table 2

r CIL (3) r CIP (3) r CIL (4) r CIP (4) r CIL (5) r CIP (5) r CIL (6) r CIP (6) r CIL (7) r CIP (7)
0 0 0.04741 0.03277 0.1752 0.1482 0.3486 0.3168 0.4834 0.4366

0.000991 0 0.08662 0.06862 0.2446 0.2319 0.4819 0.4507 0.6574 0.5839
0.003511 0.006150 0.1141 0.09807 0.3002 0.2936 0.5628 0.5169 0.7536 0.6709
0.006296 0.006150 0.1448 0.1251 0.3472 0.3412 0.6293 0.5800 0.8285 0.7534
0.01230 0.006150 0.1781 0.1648 0.4129 0.4077 0.7097 0.6494 0.9169 0.8377
0.02681 0.02468 0.2318 0.2234 0.5178 0.4990 0.8123 0.7518 1.019 0.9601
0.04701 0.02468 0.2865 0.2899 0.6186 0.5796 0.8991 0.8350 1.099 1.062
0.06781 0.05581 0.3421 0.3458 0.7136 0.6610 0.9773 0.9088 1.171 1.159

5×5 6×6 7×7

20%

3%

25%

3×3 4×4

5%
7%

10%
15%

Matrix Size
T-point

1%

 
3.2 Rank-reversal problem 
 
With respect to the change of c and m(c) defining the function f, the range of aij changes, resulting in the 
perturbation of the Frobenius root, and the concomitant alternation of the direction of the corresponding 
eigenvector. This alternation, in turn, reverses the preference order of alternatives, resulting in the 
rank-reversal problem. If a rank reversal occurs between primal alternatives, derived preference order 
cannot be trustworthy. 
 
In the analysis of the rank-reversal problem, we randomly extracted 1000 samples from each set of 20000 
random samples AL and AP from 3×3 to 7×7 defined in Section 2.2.1, and evaluated the robustness of fL 
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and fP with respect to the change of c and m(c) as the following range: 
 

c: 0≤ c 10,   m(c): 1 m(c)≤ ≤ ≤ 3.                                             (4) 
 
The ranges of c and m(c) in Equation (4), corresponding to the wider range of aij mapped by fL and fP than 
that mapped by the previously proposed scales f are wide enough for evaluating fL and fP. In the 
comparison of fL and fP, all samples are categorized by each 1%, 3%, 5%, 7%, 10%, 15%, 20% and 
25%-T-point defined in Section 3.1, and in each category, fL and fP are evaluated as to whether or not rank 
reversal occurs. Among the above-mentioned 1000 samples, A and A’ denote the cumulative number of 
samples generated by fL and fP to each T-point, respectively. Furthermore, among the A and A’ samples 
in each category, B and B’ respectively denote the cumulative number of samples where the rank 
reversal occurs4 with respect to the change of c and m(c) over the range shown in Equation (4). Table 
3 shows (A, B), (A’, B’) for h=4. As for the total number of rank-reversal samples, B B’ for h=3, 4 and 
B B’ for h=5, ..., 7; however, for samples with small CIs, B≥B’ held in every matrix size h=3, ..., 7, 
implying that f

≥
≤

P was more robust than fL for the change of c and m(c). Figures 1.1 and 1.2 show 
rank-reversal examples whose CIs are small and the rank reversal occurs in the neighborhood of c=1.  
 

Number of samples and their ratios: Rnak reversed Table 3
Matrix Size

Scale
T-point A B A' B' A B A' B' A B A' B' A B A' B' A B A' B'

1% 21 0 47 0 13 0 16 0 13 0 8 0 10 2 7 0 6 0 2 0
3% 41 0 47 0 36 4 37 0 23 0 30 0 23 3 22 0 20 4 13 0
5% 59 0 144 0 50 8 63 0 51 0 55 0 38 4 36 1 41 7 27 0
7% 75 0 144 0 84 15 79 0 72 5 77 1 58 6 60 2 60 11 58 0

10% 106 0 144 0 113 20 116 0 115 16 118 5 89 6 86 5 103 23 99 0
15% 169 0 231 0 169 26 154 0 180 22 173 8 125 12 123 11 159 30 156 13
20% 217 0 231 0 208 34 210 3 230 35 230 16 166 20 177 15 225 40 223 35
25% 275 7 336 0 260 42 265 3 272 44 278 35 228 33 220 16 288 46 308 45

100% 1000 36 1000 2 1000 291 1000 285 1000 127 1000 196 1000 161 1000 274 1000 201 1000 368

f Lf L

7×7
f P

3×3 4×4 5×5 6×6
f P f L f Pf L f P f L f P

 
Example 1 
 

AL = , rCI


















1191
1182/1
9/18/114/1

1241

L(4) =0.0659, c=1        AP = 
 , rCI


















113.141
113.10717.

0699.0975.1369.
139.171.21

P(4) =0.126, m=m(1). 
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c

0.1
0.2
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0.4
0.5

weight

1 1.5 2 2.5 3
m

0.1
0.2
0.3
0.4
0.5

weight
 
 
 
 
 
 
 
 
 

Figure 1.1: Change of the degree of importance    Figure 1.2: Change of the degree of importance 
derived from AL                                              derived from AP 

 
3.3 Discriminating sensitivity 
 
One of the principal purposes of the AHP is to quantify the degree of importance for each alternative and 
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4 As for the matrix whose size h=5 to 7, we counted the sample whose rank reversed between the highest 
and the second highest weighted alternatives. 



to discriminate an important alternative from others. Let v1 and v2 respectively denote the largest and 
second largest element of the eigenvector5 corresponding to the Frobenius root, and define v∆ ≡  
v1 - v2 as the index of the discriminating sensitivity of scales fL and fP. Furthermore, let v∆ L and ∆ vP 
denote the v calculated by f∆

∆
L and fP, respectively. Table 4 shows the result of comparisons between 

v∆
∆

L and vP for h=4. At 1% significant difference level in X2-test, the number of samples holding 
vL< v∆ P was larger than that of v∆ L≥ ∆ vP for every matrix size, implying that fL was inferior to fP in 

discriminating sensitivity. 
 

Comparison of discriminating sensitivity (4× 4) Table 4

T-point Obs. Ratio Obs. Ratio Obs. Ratio Obs. Ratio Obs. Ratio Obs. Ratio
1% 99 44.4 2 0.900 122 54.7 83 31.3 1 0.380 181 68.3
3% 264 42.6 2 0.320 354 57.1 207 34.4 1 0.170 393 65.4
5% 406 40.3 2 0.200 599 59.5 369 36.0 2 0.200 653 63.8
7% 575 40.9 3 0.210 829 58.9 521 37.2 2 0.140 877 62.6

10% 813 40.6 3 0.150 1188 59.3 797 39.8 2 0.100 1206 60.2
15% 1237 41.2 3 0.100 1765 58.7 1207 40.2 3 0.100 1792 59.7
20% 1753 43.8 3 0.0700 2249 56.2 1656 41.1 3 0.0700 2367 58.8
25% 2216 44.3 4 0.0800 2787 55.7 2155 43.1 4 0.0800 2847 56.9
100% 7842 39.2 5 0.0300 12153 60.8 7842 39.2 5 0.0300 12153 60.8

f L (x ij ; 1)
  v L  < v Pv L = v Pv L > v Pv L < v P  v L  = v P  v L  > v P

f P (x ij ; m (1))

 
 
4. Comparison between the linear and the power scales using the actual sample 
 
4.1 CI 
 
In judging the consistency of a pair-wise comparison matrix A, Saaty insists that the allowable upper 
bound of CI is 10% of RI. In contrast, E.F. Lane and W.A.Verdini advocate that the allowable upper 
bound of CI is 1%, 5% and 10% of RI for the case n=3, 4 and more than 5, respectively, because the size 
of CI depends on matrix size n (Lane and Verdini, 1989). However, these threshold values employing the 
certain ratio of RI as the allowable upper bound of CI have been criticized because their rationale is weak. 
Furthermore, since rCIL(h) and rCIP(h) have different distributions, comparing fL and fP with respect to the 
number of samples whose CI are smaller than the above-mentioned threshold value is not essential. 
Therefore, we evaluated fL and fP based on the cumulative number of samples with respect to each T-point 
of rCIL(4) and rCIP(4) as defined in Section 3.1. 
 
Let aCIL and aCIP denote the CI obtained from the actual sample, AL and AP, respectively. Table 5 
summarizes each rCIL(4) and rCIP(4) corresponding to the T-point defined in Section 3.1, and the 
cumulative number of samples whose aCIL and aCIP are equal to or less than each rCIL(4) and rCIP(4). As 
can be seen in the table, rCIL(4)>rCIP(4) from the 1% to 15%-T-point; however, the cumulative number of 
samples generated by fL is smaller than that generated by fP, at 1% significant difference level in X2-test. 
This result showed that the CI of AP tended to cluster nearer to 0 than that of AL when the pair-wise 
comparison matrix AL and AP were generated by fL and fP from common {xij}d, respectively. Implications 
that arise from these results are: (i) fP quantified individuals’ feelings more consistently than did fL, and 
(ii) the number of samples with a large CI not being worthy of analysis may be reduced in applying the 
AHP to social research. 
 
4.2 Rank-reversal problem 
 
Table 6 shows (A, B), (A’, B’), where A and A’ are the cumulative number of samples generated by fL and 
fP respectively to each T-point among all (1409) actual samples, and among A and A’ samples in each 
category, B and B’ are the cumulative number of samples where the rank reversal occurred with respect to 
the change of c and m(c) over the range shown in Equation (4). As can be seen, the number of 
rank-reversal samples was 57 among all AL, and 43 among all AP; this difference seemed to be small.  
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Distribution of a CIL  and a CIP Table 5

 r CIL (4) Obs. Ratio r CIP (4) Obs. Ratio
1% 0.04741 302 21.4% 0.03277 379 26.9%
3% 0.08662 430 30.5% 0.06862 549 39.0%
5% 0.1141 599 42.5% 0.09807 717 50.9%
7% 0.1448 657 46.6% 0.1251 731 51.9%

10% 0.1781 787 55.9% 0.1648 932 66.2%
15% 0.2318 949 67.4% 0.2234 1016 72.1%
20% 0.2865 1029 73.0% 0.2899 1106 78.5%
25% 0.3421 1102 78.2% 0.3458 1195 84.8%

100%     --   1409 100.0%    --   1409 100.0%

T-point
f L (x ij ; 1) f P (x ij ; m (1))

Number of samples and their ratios: Rnak reversed Table 6

A B B/A A' B' B'/A'
1% 302 0 0% 379 0 0%
3% 430 1 0.233% 549 0 0%
5% 599 2 0.334% 717 0 0%
7% 657 3 0.457% 731 0 0%

10% 787 4 0.508% 932 0 0%
15% 949 4 0.422% 1016 6 0.591%
20% 1029 5 0.486% 1106 16 1.45%
25% 1102 9 0.817% 1195 18 1.51%

100% 1409 57 4.05% 1409 43 3.05%

T-point
f L (x ij ; 1) f P (x ij ; m (1))

 
However, insofar as the samples whose aCIL and aCIP were smaller than the 5%-T-point, which is nearly 
equal to 0.1, no rank reversal occurred among AP, while two occurred among AL, as shown in Example 2. 
Furthermore, among AL, rank reversal occurred even though such samples’ CIs were small enough to be 
included in the group of “consistent” sample; in contrast, among AP, rank reversal was never seen in the 
consistent group.  
 
Figures 2.1, 2.2 shows rank-reversal examples whose CI is small and whose reversals occurred in the 
neighborhood of c=1. In these cases, fL is approximately equivalent to Saaty’s 1-9 linear scale. 
Furthermore, in Example 2, the rank reversed between primal alternatives, rendering preference order 
derived by fL untrustworthy.  
 
Example 2 
 

AL= , aCI
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
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


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L=0.0819, c=1.           AP = 
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






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1514.94.11

P=0.0949, m=m(1). 
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Figure 2.1: Change of the degree of importance    Figure 2.2: Change of the degree of importance 
derived from AL                                              derived from AP 

 
In addition to the robustness of fP in the consistent group, the abruptness in the increase in the number of 
rank-reversal samples in the group with CIs larger than the 15%-T-point coincided with the number of 
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rank-reversal samples. Leaving aside the discussion about the upper bound of acceptable CI, this 
coincidence might serve a good criterion for establishing the upper bound. 
 
4.3 Discriminating sensitivity 
 
Table 7 shows the results of comparisons between ∆ vL and ∆ vP for the 1409 actual samples in the 
same way as the analysis for the random sample in Section 3.3. As can be seen, both the 143 cases out of 
182 samples of fL and the 143 cases out of 194 samples of fP are 1 matrix at the intersection of the 
1%-T-point row and the v∆ L = v∆

∆
P column. Additionally, the 235 cases out of the 247 samples of both 

fL and fP are v1 = v2, resulting in vL = v∆ P = 0 at the intersection of the 100%-T-point row and the ∆ vL 

= v∆ P column. These results, contrary to those of the random sample shown in Table 4, imply that the 
actual sample obtained from the survey on public opinion includes responses whose pair-wise comparison 
data {xij}d are all 0 or responses with more than two “tie” alternatives weighted most. On the contrary, in 
the comparison of fL and fP, the remaining samples, except for the responses whose pair-wise comparison 
data {xij}d are all 0, show that the number of samples satisfying ∆ vL <∆ vP is larger than that satisfying 

v∆ L≥ ∆ vP, at 1% significance level in X2-test. Thus, fL is inferior to fP in discriminating sensitivity. 
 
Comparison of discriminating sensitivity Table 7

T-point Obs. Ratio Obs. Ratio Obs. Ratio Obs. Ratio Obs. Ratio Obs. Ratio
1% 46 15.2 182 60.3 74 24.5 47 12.4 194 51.2 138 36.4
3% 64 14.9 194 45.1 172 40.0 77 14.0 197 35.9 275 50.1
5% 87 14.5 211 35.2 301 50.3 99 13.8 212 29.57 406 56.6
7% 105 16.0 212 32.3 340 51.8 100 13.7 214 29.27 417 57.1

10% 146 18.6 218 27.70 423 53.8 160 17.2 221 23.71 551 59.1
15% 205 21.6 225 23.71 519 54.7 189 18.6 221 21.75 606 59.7
20% 231 22.5 226 21.96 572 55.6 244 22.1 229 20.71 633 57.2
25% 285 25.9 226 20.51 591 53.6 314 26.3 229 19.16 652 54.6

100% 469 33.3 247 17.530 693 49.2 469 33.3 247 17.530 693 49.2

f P (x ij ; m (1))
  v L  > v P   v L  = v P v L < v P v L > v P v L = v P   v L  < v P

f L (x ij ; 1)

 
 
5. Concluding remarks 
 
The AHP is a support system for decision making with subjective data as input and quantified data as 
output. To date, various judgment scales for a pair-wise comparison have been proposed and evaluated 
from the perspective of appropriateness for representing each DM’s perception. In particular, Saaty’s 
linear scale and Lootsma’s power scale have often been compared and have generated much discussion. 
However, the weight obtained from a pair-wise comparison matrix cannot be verified theoretically, 
making evaluation of these two scales quite difficult. What is worse, this evaluation has not been able to 
be easily conducted because the CI of each scale, whose size is one of the criteria of evaluation, cannot 
simply be compared because of the difference of the properties of these two scales. 
 
This study evaluated Saaty’s linear scale and the power scale using two types of data, non-biased random 
sample and biased actual samples, from the point of view of appropriateness for representing each DM’s 
feeling, where the criteria of appropriateness are the size of CI, robustness with respect to the change of 
the range of each scale, and discriminating sensitivity of each scale. In order to make comparisons 
between the two scales fair, the T-point was defined based on the relative size of the CI among all random 
samples rather than on its absolute value. The results of this study provide some evidence that, as a 
judgment scale, the power scale is preferable to Saaty’s linear scale.  
 
Nevertheless, several issues remain. (i) How do we determine the base of a power scale?—Which base m 
is the most appropriate for representing individuals’ perceptions? (ii) How should we generate random 
samples?—On which interval I should they be based, and in accordance with which distribution should 
they follow? (iii) How would actual samples in a matrix other than 4×4 behave?  
 
The first issue is which base to use for the power scale. In this study, we set m=m(1) ( 1.3945); therefore, ≅
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fL(xij;1)>fP(xij;m(1)) holds when 0 x≤ ij≤ 6 (corresponding to 1≤ aij<7 for Saaty’s scale). This setting of m 
is likely to make the distribution of the CI of AP clustered nearer to 0 than that of AL. Additionally, the 
discriminating sensitivity of the power scale is superior to Saaty’s linear scale. Furthermore, concerning 
the robustness with respect to the change of the range of each scale, the power scale was also superior to 
Saaty’s linear scale. Thus, we might conclude that the power scale functioned better than Saaty’s linear 
scale as the representation of each DM’s perception. Whereas m(1) seems to be a good option for defining 
the power scale in comparison with Saaty’s linear scale, we cannot conclude that m(1) is the best base for 
representing each DM’s perception in the process of a pair-wise comparison. Determining the best base 
requires further analysis; other criteria besides CI, rank reversal and discriminating sensitivity must be 
investigated.  

 

 
The second issue is how to generate the random sample. In this study, the random sample was generated 
by selecting numbers from the set {-8, ..., -1, 0, 1, ..., 8} in accordance with uniform randomness. In 
addition, we compared two scales through either (i) a random sample generated on the basis of a set {-5, 
-3, -1, 0, 1, 3, 5} in accordance with uniform randomness, or (ii) a random sample generated on the basis 
of a set {-8, ..., -1, 0, 1, ..., 8} whose distribution follows N(0, 4.22316). Leaving out the detail of the 
results, we note that, in either case, results similar to those of the analyses in Section 3 were obtained. 
However, both the random sample defined in Section 2.2.1 and the two aforementioned random samples 
satisfy weak single-peakedness and symmetry, possibly affecting the results. On the other hand, samples 
obtained from the application of the AHP to a realistic decision-making process do not always satisfy 
these two properties. Thus, further analysis using a random sample following a different distribution is 
necessary. 
 
The third issue would be the size of actual sample. In this study, the matrix size of the actual sample was 
only 4×4; therefore, further investigations from at least 3×3 to 7×7 matrices are needed. 

                                                       
6 standard deviation of the {xij}d 
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