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Abstract

The Graded Eigenvector Method (GEM) uses the upper triangular part of the
matrix of judgments A to derive the priorities of the alternatives. Here we
study the principles of rank preservation of GEM under a single criteérion when
new elements are added.

1. Introduction

Yu [1]) and Wang {2] use the matrices N and M given by:

n -

1/n a s 3 a,,. _ -
12 In 1 1 au o.e al“
1/(n=1) - 3,
. 2 (22 azn
N = ", . M=
O 1/2 31 net1 L O q
e ] -
to derive the priorities of alternatives. 1In this paper, we use

the upper trianguilar matrix M to study the principles of rank
preservation under a single criterion when new elements are added
to the set of alternatives being compared..
Definition (Strong Rank Preservation): Given an nxn ‘matrix of
judgments A = (a;;). The rank of the alternatives is strongly
preserved if a new element is added to the set and the new
resulting (n+l x n+l) matrix of paired comparisons B satisfies:
b;; = a;; for i,j =1,2,...,n
Bi o1 / Pyt T 8,00 / 8ja for all i and j.
Definition (Weak Rank Preservation): Given an nxn matrix of

judgments A = (a;;)- The rank of the alternatives . is weakly

t
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preserved if a new element is added to the set and the new
resulting (n+l x n+l) matrix B satisfies:

b.. = a.

i jj for 1,3 = 1,2,...,n

2. Strong Rank Preservation

Theorem 2.1{3] Let the judgments of the upper triangular matrix A
of order n be consistent. Le£ Aoy (A) = n and W = (W1ﬂg,...,Wdr
be the principal eigenvalue and eihenvector of A, respectively.

Let A be the upper triangular matrix of order (n+l) given by:

[- a, asl 7 ’-] au - a -
. A H I
A = ., where A= 3o
‘. a »
O . nn+t 'o' H
A N1 ] L © .
Let A, (A') and W = (w'1,W'2, cee g W'rM )T be the principal

eigenvalue and eigenvector of A", respectively. When a new element

is added, a necessary and sufficient condition for strong rank

preservation is that a;, ,; = cw;, (c>0), (i=1,2,...,n) for the

judgment matrix A.

Proof: Let us prove the sufficient principle. Suppose that-.a; .,

= ¢cw;, (c>0), (i=1,2,...,n). Let
Ao (A) = A, A (A7) = A+Ad, W = (W ,..., W)
From the eigenvalue problem:
ATW o= (A AW, (1)'
we obtain:
AW +(a| ne1132 pyy ™8 nn)Tw;H =‘(Z+Al)v:l ’ (2)

(n+Hhw =Q+anpw; (3)

and we have

OOOOOOOOOOOOO_C‘?MOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO




OOOOO‘OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO‘OOOOOOOOO.

szi = AA/c, c>0. (4)

Substituting (4) into (2) we have:
AW +(CW,,CW . CW ) (A1/ C) = (A + ADW * . (5)
From (3) we have AA = 1, thusW' =W W, W _1/0), (c>0), Q.ED.

Let us now prove the necessary condition. Suppose that after
adding a new element, the Jjudgment matrix A" is strong rank
preserving, and the corresponding principal eigenvalue and
eigenvector are given by }.mx(A') and W o= (W:,..., W;, W'M)T,

respectively. Similarly, assign 4, (A) = A, lmax(A’) = A+AA. From

the eigenvalue problem (1) we have:

AW+ (oal ns1133 ne1? 3, a+l)TW;4l =@ +Al)w ] (©)
(M+ W =2+ AW | (7)

and hence we have W™ = Ail/c, c>0. (8)
Substituting (8) into (6) we obtain:

AW’ +(a 8,00 ) (AR Clm e ADW (9)

xan'azuu"

or AW =W  +ANW  —(a, /Ca, , /Crea, ., . /C)]=0 (10)

l1n+1l 3n+d

Evidently, : = (@4 1/Cr -0 @, m1/C)T satisfies (10). Since A is

a strong rank preserving, we have W o= (Y;J:, .- .,\;:1:)T = (W, ..., wn)T,

and the result follows. Q.E.D.
3y =W, (i=1.2,2-,0) (c>0),

Corollary 1. Let the judgments of the upper triangular maigrix A of

order n be consistent. Let A, (A) = n and W = (W,,Wz,...,W,,)T be

the principal eigenvalue and eihenvector of A, respectively.

Suppose that the upper triangular matrix of order n+2 is given by

A [ al n+l al ne2 Fl X _

A . . au vea aln

b ’ ) 2 sam a
A = " an n+l an n+2 ,whereA- 2n
o - -
LR I . O
L n |
L n-+42
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)WM(A') and W = (W},W}, ... , W_,4) are the principal eigenvalue

and eigenvector of Af, respectively. If two new elements are
added, the the necessary and sufficient condition for strong rank

preservation is given by:

{a, 1oy ™ C,W,(C, > 0)(i = 1,2,+,n)

,for the jud ix A.
rer = CyW,(C, > O)fim 1,2,me,ny’ o 10 JuGGEMENt matrix A

3

Proof: (Sufficiency) Let
A (A) = A, A (B) = A+AA, W = (W, ..., W)'.

From the eigenvalue problwm (1) we have:

. T . T -
AW+ (al n-vl’az n+l’“.'an n+l) wn-n + (al n+2’a: n+2’."'an n+2) wn+2 = (}' (
. 11)
+ AW’
(n+I)W;+l+an+ln+2w;+2=inx(A )wn»l (12)
(n +Z)W':n=}‘mu(A.)w;+:=(}‘+Aj')W:n (13)
and hence we have:
WM,=A1/C,s(cl>0),wn“=A1/C1,(C2>0) (14)
substituting (14) into (11) we have:
AW " +(C v
+(C,W,CW,C W )AL/ C*)+(Czwvczwr‘"yczW,,)T(Ai/CJ)
=A+ AW’ (15)

Evidently, W = 2W is a solution that satisfies (15). Thus, A is
strong rank preserving. On the other hand, from (13) we have AA=2.
Thus, we have:
W' = QW 2W, ~2W 2/C 2/ C ) (C, > 0(C,>0. QED.

(Necessity) Suppose that after adding two new elements, the
judgment matrix A" is strong rank preserving, and the principal
eigenvalue and eigenvector of A are given by Arax (A7) and W =
(W%,W}, cen W:"1)T, respectively. Similarly, assign A (&) = A,

and A, (A") = A+AA. From (1), (11)-(15) we have:

1ie
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AW'-—~1W°+A1{V.V’“[(3 /¢ ,a

ln+t 3’ 2n¢l/cl’".’an;+!/cl)r (16)
+(aln+z/c2’az ”+2/c2’00"an R’I/CZ)T]}
Evidently,
- 1 T
W = () /Crreen 08 0/ C) H(@1 102/ S v - - 18 102/ Cp)

satisfies (16). Since A is strong rank preserving,we have:

W= W) W] e W = QW 2W e 2W )T (17)
Comparing (16) and (17), we obtain:

a = c,W; (i=1,2,...,n), ¢, > 0O

i n+l
a; 2 = GW; (i=1,2,...,n), ¢, > 0

Q.E.D.

The result of Corollary 1 can be easily extended to the case

in which m new alternatives are added to the set.

r

Corollary 2. Let the judgments of the upper triangular matrix A of
order n be consistent. Let 4, (A) = n and W = (w,,wz,...,wn)' be

the principal eigenvalue and eihenvector of A, respectively.

Suppose that the upper triangular matrix of order n+m is given by

-

A

alno\ ala+2 ot aln#m
. o sxe n
A . 5 ¢ 1 311 a‘n
.se *ne
. ann+1 an 042 an nem A_ 2 azn
A = ;where -
n l “es '0.
+ an+ln+2 aruln«,m o
. s & no
. .
L O ndm
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- - w L1 * L] ‘r
A (A) and W = (W, W, ... , Wy Woay ---, W, ) are the

max

principal eigenvalue and eigenvector of A, respectively. If m new
‘elements are added, the necessary and sufficient condition for

strong rank preservation is given by:

a,,,,=C,W,(C, >0)i=120n)

in+l

a, ,,=C,W (C >0)i=12:n)

in+2

e

o

in+m

=C, W,(C_>0)i=12.,n) for the judgement matrix A

3. Weak Rank Preservation

Lemma. For a matrix of incomplete judgments the priorities of the

alternatives obtained using GEM [2] are given by:

W, =[1/(=D T 8,W)i=n—1,0=201) (18)

j= o]
Theorem 3.1 [3] Let A = (a;;),, be an upper triangular judgment
matrix. After adding a new element, A = (255) arixner If the

elements ‘of the ith row and the Xth row satisfy ay,; 2y
(3=1,2,...,n), and at least there is an inequality which holds, and
the new judgment satisfies a; .., 2 23 ,,;, ‘then the relative of
importance of the ith element and the kth element does not charge.

Proof: Follows from (18).

Corollary 1 [(3]. Under the conditions of Theorem 3.1, if
a; o1 = 3 peys then the relative importance of the ith alternative

and the kth alternative does not change.
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