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Summary: We will show here that the principal eigenvector of a matrix is a necessary representation of 
the priorities derived from a positive reciprocal pairwise comparison consistent or near consistent matrix. 
A positive reciprocal n by n consistent matrix W = (wij) satisfies the relation wik = wij wjk .  If the principal 
eigenvector of W is w=(w1 , … ,wn ) the entries of W may be written as wij = wi /wj .  Matrices A = (aij) that 
are obtained from W by small positive reciprocal perturbations of wij , known as near consistent matrices, 
are pivotal in representing pairwise comparison numerical judgments in decision making. Since W is 
always of the form wij = (wi/wj) a perturbation of W is given by aij = (wi/wj) εij and their corresponding 
reciprocals aji = (wj/wi) (1/εij). A priority vector for use in decision making that captures a linear order for 
the n elements compared in the judgment matrix can be derived for both consistent and near consistent 
matrices, but it is meaningless for strongly inconsistent matrice except if they are the result of random 
situations that have associated numbers such as game matches where the outcomes do not depend on 
judgment.  It is shown that the ratios wi /wj of the principal eigenvector of the perturbed matrix are close to 
aij , if and only if the principal eigenvalue of A  is close to n. We then show that if in practice we can change 
some of the judgments in a judgment matrix, it is possible to transform that matrix to a near consistent one 
from which one can then derive a priority vector. The main reason why near consistent matrices are 
essential is that human judgment is of necessity inconsistent, which if controllable, is a good thing.  In 
addition, judgment is much more sensitive and responsive to large than to small perturbations, and hence 
once near consistency is reached, it becomes uncertain which coefficients should be perturbed with small 
perturbations to transform a near consistent matrix to a consistent one.  If such perturbations were forced, 
they would seem arbitrary and can distort the validity of the derived priority vector in representing the 
underlying real world problem.  
 
 
1.  Introduction 
 
In the field of decision-making, the concept of priority is of paramount importance and how priorities are 
derived can make a decision come out right or wrong.  They must be unique and not one of many 
possibilities, they must also capture the order expressed in the judgments of the pairwise comparison 
matrix. The idea of a priority vector has much less validity for an arbitrary positive reciprocal matrix A 
than it does for a consistent and a near consistent matrix. It is always possible to use metric approximation 
to find a vector w the ratios of whose coefficients are according to some metric “close” to the coefficients 
of A without regard to consistency. The judgments in A may be given at random and may have nothing to 
do with understanding relations in a particular decision.  Closeness to the numerical values of the 
coefficients says little about order. In this paper we show that the principal eigenvector, known in 
mathematics to be unique to within a positive multiplicative constant, is the only possible candidate in the 
quest for deriving priorities.  
 
The fact that the AHP allows inconsistency is attributable to the fact that in making judgments people are 
naturally cardinally inconsistent and ordinally intransitive.  For several reasons this is a good thing, 
otherwise people would be like robots unable to change their minds with new evidence and unable to look 
within for judgments which represent their thoughts and feelings.   
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Topology has at least two great branches, metric topology and order topology [9], (applied to both discrete 
and continuous topological spaces). In judgment matrices we deal with a discrete number of judgments that 
take on discrete scale values. In metric topology the central idea is that of a metric or distance usually 
minimized to find close approximations to solutions. One example is the method of least squares (LSM) 
which determines a priority vector by minimizing the Frobenius norm of the difference between the 
judgment matrix A and a positive rank one reciprocal matrix (y i/yj ):  
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Another is the method of logarithmic least squares (LLSM) which determines a priority vector by 
minimizing the Frobenius norm of  (log aij xj/xi ): 
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In general, different methods give different priority vectors and different rankings.  Here is an example:  
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LSM does not always yield a unique priority vector.  In this case, a second LSM solution is (.779, .097, 
.124); both solutions yield the desired minimum value 71.48.  Here, both LSM and LLSM are square 
metrics and are examples of only one of an infinite number of potential metrics and an infinite number of 
possible (often contradictory) priority solutions resulting from these metrics.  I considered both these 
methods in some detail in my first book on the AHP, The Analytic Hierarchy Process, and had to reject 
them.  That was basically because they did not capture the idea of dominance and its intensity, that 
naturally emerge in the theory of graphs, their adjacency, path and circuit matrices and the corresponding 
fundamental applications in electrical engineering. 
 
For a discussion of order, we need to introduce the concept of simple or linear order. A set is said to be 
simply ordered if its elements satisfy the two conditions: 1) For any two elements x and y exactly one of the 
relations x < y, x = y, y < x be valid (dominance), and 2) If x < y and y < z, then x < z (transitivity).  
Extracting a simple order from a matrix of judgments at first seems difficult because both conditions may 
be violated when that matrix is inconsistent. A priority vector p = (p1, … , pn) is a simple (cardinal) 
ordering of the elements, that is derived from a judgment comparison matrix A according to the order 
among its coefficients, and each of whose ratios pi/pj is close to its corresponding aij , the degree of 
closeness of all ratios together determined by the closeness of the principal eigenvalue to n, the order of the 
matrix. We call a priority vector strong when the two conditions hold, and weak when closeness does not 
hold. For judgment matrices, the priority vector must be strong; for matrices involving information on, for 
example, numbers of goals scored in a sport or the number of wins and losses in the games and sports of 
matches, a weak priority vector may be adequate.  The principal eigenvector of an arbitrary (inconsistent) 
positive reciprocal matrix is a weak priority vector, that of a near consistent matrix, a strong priority vector 
and finally that of a matrix that is only positive, is unlikely to be a priority vector. 
 
Not only do the elements being compared have an order, but also the coefficients in the matrix, the 
judgments, have their order.  We refer to that order as complex order.  As we shall see below, the notion of 
complex order involves both dominance and transitivity, in compounded forms.  Our problem, then, is to 
derive a simply ordered priority vector from the complex order of the coefficients.  It is meaningless to 
speak of a priority vector for a very inconsistent matrix because even though an order may be obtained by 
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the principal eigenvector, or any other way, such as minimization used in the metric approach, the ratios of 
the solution vector would not be close to the aij. 
 
It is known in graph theory that the number of paths of length k between two vertices of a graph can be 
obtained from the kth power of the adjacency matrix of that graph.  A judgment matrix is an adjacency 
matrix whose entries represent strengths of dominance. The powers of a judgment matrix capture the 
transitivity of dominance or influence among the elements. To capture order in a priority vector, we need to 
consider all order transitions among the coefficients and their corresponding powers of A.  First order 
transitions are given in the matrix itself, second order ones in its square and so on.  Thus powers of A and 
their convergence become a central concern.  The dominance in each of these matrices are obtained by the 
vector of normalized row sums, and the overall dominance is obtained by taking the average of these 
results, their Cesaro sum, known to converge to the same limit as the powers of the matrix. See next 
section.  An upshot of the order approach is that it yields a unique outcome vector for the priorities that 
transforms the complex order among the coefficients to a linear order.  The priority vector is given by the 
principal eigenvector of the judgment matrix.  In a consistent matrix if aij > aik for all j and k, that is if one 
row dominates another row, the priority of the ith element is greater than the priority of the kth element, 
which is to be expected.  For an inconsistent matrix, it is inadequate to use the rows of the matrix, but it 
turns out that for arbitrarily large powers of the matrix [10], the rows acquire this characteristic, and thus in 
the limit yield the desired linear order.   
 
In our case the existence of the eigenvector can be shown and its computation carried out in two ways: 1) 
by using the theory of Perron which applies to positive matrices (and our judgment matrices are positive), 
or 2) by using multiplicative perturbation theory applied to a positive reciprocal consistent matrix (and our 
judgment matrices are not only positive, but also reciprocal).  A consistent matrix already has the Perron 
properties without need for the theorem of Perron. 
 
Some advocates of the geometric mean (LLSM), which for a matrix of order n > 3 can give different rank 
order priorities than the eigenvector, have borrowed a failed concept from utility theory, that of always 
preserving rank, to justify using it as a priority vector.  That there are many examples in the literature in 
which both preference and rank can reverse without introducing new criteria or changing priorities has not 
yet caught their attention.  Numerous copies of an alternative and deliberately planted “phantom” 
alternatives among many others can cause rank reversals.  If rank is to be preserved in some decisions and 
allowed to reverse in others, even when the problem and all its elements (criteria, alternatives, judgments) 
are the same, as has been convincingly argued in the AHP and other decision making approaches.  Whether 
one wants to allow rank to reverse or not must depend on considerations outside decision theory. Thus we 
must have two ways to derive the priorities, one to preserve rank and one to make it possible for it to 
change [8] as the AHP does with its distributive and ideal modes. We know of no other decision theory that 
has this essential flexibility.  To always preserve rank can lead to poor decisions as Luce and Raiffa [7] 
write in their book, after proposing to always preserve rank as a fourth variant of their axiom on rank.   
‘The all-or-none feature of the last form [i.e. always preserving rank] may seem a bit too stringent … a 
severe criticism is that it yields unreasonable results.” Indeed it does and their warning is so far 
inadequately heeded by practitioners who seem oblivious to it and are willing to leave the world in the dark 
about this very crucial aspect of decision-making.  A method that always preserves rank may not yield the 
correct rank-order as needed in many decision problems. 
 
Other people have thought to create their own geometric mean version of the AHP by raising the priorities 
of the normalized alternatives to the power of the criteria multiplying across the criteria and taking the root 
to do hierarchic synthesis. A trivial example with dollars for two criteria (C1,C2) and three alternatives 
(A1,A2,A3) with dollar values of (200,300,500) and (150,50,100) under C1 and C2 respectively defines the 
relative dollar importance of the criteria of (1000/1300,300/1300).  Straight addition and normalization 
gives the correct answer (350/1300, 350/1300,600/1300) = (.269,.269,.462) that is also obtained by the 
usual AHP method of hierarchic composition by multiplying the normalized values of the alternatives by 
the priorities of the criteria and adding.  However, the proposed procedure of raising the normalized 
priorities of the alternatives to the power of the criteria and taking the cubic root yields the wrong outcome 
of (.256,.272,.472). One must never use such a process because of several failures among which are its 
failure to give the correct decision [11], and its failure to be a meaningful way of synthesis in case of 
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dependence and feedback as in the Analytic Network Process (ANP) [12].  The survival of any idea in 
decision-making depends on what it does and how it performs when there is feedback. 
 
Emphasis on the calculus and its methods of solution has made some people think that all real life problems 
can be solved through optimization methods that rely on metric approximation.  But that is not true. By 
their definition, priorities require order in their construction. 
 
Statistical methods are no more secure in dealing with questions of order and rank because they are 
fundamentally metric methods of closeness.  With the one exception that follows the story of order and 
dominance told below, in their present state of development statistical methods cannot be counted on to 
correctly judge the effectiveness of ways to derive priorities from judgments. 
 
 
2. The Priority Vector of a Consistent Matrix A 
  
A consistent matrix is a positive reciprocal n by n matrix whose coefficients satisfy the relation aij ajk = aik,, 
i,j,k = 1,…, n.  We first show that it is necessary that the priority vector w =(w1,…, wn ) of a consistent 
matrix also be the principal eigenvector of that matrix.  Before doing that we show (without using the 
theory of Perron) that a consistent matrix has a principal eigenvalue and a corresponding principal 
eigenvector.  To prove that, we use the fact that a consistent matrix is always of the form W = (wi/wj).  Ιt 
follows that Ww = nw and because W has rank one, n is its largest eigenvalue and w is its corresponding 
eigenvector and the coefficients of W coincide with the coefficients of the matrix of ratios from the vector 
w.  Actually we see in this case that the coefficients in the Hadamard product WoWT are all equal to one and  
their sum  is equal to n 2 and if averaged by dividing by the number of coefficients which is also n 2, the 
outcome is equal to one, and closeness applies perfectly in this case.  The priority vector is the same for all 
metric and order methods in this case.  It is the vector w. 

TT

 
Next we show that order holds for a consistent matrix A. Element Ai is said to dominate element Aj in one 
step, if the sum of the entries in row i of A is greater than the sum of the entries in row j. It is convenient to 
use the vector e = (1,…,1)T to express this dominance: Element Ai dominates element Aj in one step if (Ae)i 
> (Ae)j .  An element can dominate another element in more than one step by dominating other criteria that 
in turn dominate the second criterion. Two-step dominance is identified by squaring the matrix and 
summing its rows, three-step dominance by cubing it, and so on.  Thus, Ai dominates Aj in k steps if (Ake)i > 
(Ake)j .  Element Ai is said simply to dominate Aj if entry i of the vector obtained by averaging over the one 
step dominance vector, two step dominance vector, k step dominance vector and passing to the limit:                                                
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is greater than its entry j.  But this limit of weighted averages (the Cesaro sum) can be evaluated: We have 
for an n by n consistent matrix A:  A k = n k-1 A, A = (wi/wj) and the foregoing limit is simply the eigenvector 
w normalized.  In general, it is also true that the Cesaro sum converges to the same limit as does its kth term 

/k T kA e e A e  that yields k step dominance.  
 
Here we see that the requirement for rank takes on the particular form of the principal eigenvector.  We will 
not assume it for the inconsistent case but prove its necessity again for that more general case. 
 
We have shown that for a consistent matrix the principal eigenvector both yields ratios close to the 
coefficients of the matrix and captures the rank order information defined by them.  It is thus the priority 
vector.  The foregoing proof is also valid for all methods proposed so far for obtaining the priority vector.  
They break down in the next stage, when A is inconsistent, but the eigenvector approach can be generalized 
as we see next. 
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3.  A Near Consistent Matrix and its Priority Vector 
 
A near consistent matrix is a matrix that is a small reciprocal (multiplicative) perturbation of a consistent 
matrix.  It is given by the Hadamard product: A = WoE where W = (wi/wj ) and .  

Small means 

1),( −=≡ ijjiijE εεε

ijε  is close to one.  Although we make use of perturbation theory here with proofs using 
additive perturbations, for small perturbations, we do not distinguish as to whether they are additive or 
multiplicative.  With slight alteration, the same proofs apply for both so long as they are small.   
 
We need near consistent pairwise comparison matrices for decision-making.  The reason is that when 
human judgment is represented numerically, it is inevitably inconsistent.  That is a good thing because 
judgment is approximate and uncertain, and forcing it to be consistent can distort relations that need not be 
as precise as required by consistency.  Further, judgment is more sensitive and responsive to large changes 
than small ones.  Once near consistency is reached, it becomes difficult to decide on which coefficients to 
perturb by a small amount to transform a near consistent matrix to one that is even closer to consistency.  If 
very small perturbations are forced, they would seem arbitrary and if carried out, can distort the validity of 
the derived priority vector in representing the underlying real world problem.  In other words, the priority 
vector of a near consistent decision matrix can be a more accurate representation of the understanding 
reflected in the judgments than the priority vector of some consistent matrix to which it is transformed by a 
sequence of small perturbations. 

First we apply perturbation theory to show that a matrix that is a small perturbation of a consistent matrix 
also has a simple positive and real principal eigenvalue and corresponding eigenvector.  We then show that 
the resulting eigenvector is the priority vector.  We note that because a near consistent matrix has a 
principal eigenvector, it can be written as a reciprocal perturbation of the matrix of ratios W corresponding 
to that vector.  Also there can be many near consistent matrices that have that same vector as an 
eigenvector.  Thus all near consistent matrices, and in fact even more generally, all positive reciprocal 
matrices can be put into equivalence classes according to the eigenvector they have in common.  Beyond 
near consistency, positive reciprocal matrices only interest us in so far as we can transform them by 
voluntary, not artificially forced, and plausible changes in judgments that lead to the perturbations that 
concern us here. 

Remark. Perron’s theorem [4,6]says that a positive matrix always has a single positive real eigenvalue that 
dominates all other eigenvalues in modulus and to which corresponds an eigenvector with positive real 
entries that is unique to within multiplication by a positive constant.  To this maximum eigenvalue and 
eigenvector are often attached two names, “principal” and “Perron” mostly the latter.  What do these facts 
and names have to do with a positive reciprocal matrix A?  Clearly, because A is positive, it has a Perron 
eigenvalue and eigenvector.  What does the fact that A is reciprocal add to the characterization of its 
eigenstructure? It turns out that for the special class of near consistent matrices, one can keep the label 
“principal,” but can drop the label “Perron” because the principal eigenvalue and eigenvector are derived 
by perturbation from a consistent matrix that already has them.  We do not need the theorem of Perron to 
do that. 

Here we provide a different proof for the validity of this for near consistent matrices without using Perron’s 
arguments.  We very much admire and value the theory of Perron, and can use it directly here. But, given 
that we have Perron’s results automatically for a consistent matrix without Perron’s proofs, we believe that 
we must also derive its conclusions, rather than invoking them, on near consistent positive reciprocal 
matrices.   
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4. Background on Perturbation 
 
We wish to prove, without assuming the theorem of Perron, that a positive n by n reciprocal matrix A=(aij), 
aji = aij

-1 that is near consistent (is a “small perturbation” of a consistent matrix: aij ajk = aik, i,j,k = 1,…,n), 
has a simple, real and positive eigenvalue that dominates all other eigenvalues in modulus and to which 
corresponds a positive eigenvector that is unique to within a  multiplicative constant.  
 
From aij = aik / ajk  we have aji = ajk / aik = aij

-1 and a consistent matrix is reciprocal.  From the validity of the 
statement of the theorem for consistent matrices we would like to show that it is also true for near 
consistent positive reciprocal matrices. 

Theorem 1 is old, relates to the roots of polynomials and was known in the 19th century [3] (small 
perturbation of the coefficients of a polynomial equation that leads to a small perturbation of its roots). 

Theorem 1: If an arbitrary matrix A= ( ) has the eigenvalues ija sµµ ,...,1 , where the multiplicity of hµ  is 

mh with , then given ε > 0, there is a δ=δ ε) > 0 such that if nm
h

h =∑
=1

s

( ij ij ij ija aγ γ δ+ − = ≤ , for all i 

and j, the matrix B = ( a ijij γ+ ) has exactly mh eigenvalues in the circle εµ <− hλ  for each h = 1,…,s. 

Proof [3]: Define f(λ,B) = det(λI-B).  Let jio µµε −= min2
1 , sji ≤<≤1  and let oεε < .  The 

circles Ch: εµλ =− h , h=1,…,s are disjoint.  Let 
hChr ∈

=
λ
min

ija

| f(λ,B)| ;  is well defined since f is a 

continuous function of λ, and >0 because the roots of f(λ,B) = 0 are the centers of the circles. The 

function f(λ,B) is continuous in the 1+n

hr

hr
2 variables λ and ijγ+ , i,j=1,…,n and hence for some δ > 0, 

f(λ,B) 0 for λ on any C≠ h, h=1,…,s if δγ ≤ij , i,j=1,…,n. 

From the theory of functions of a complex variable, the number mh of roots λ of f(λ,B)=0 that lie inside Ch 

is given by 1 f '( , )( )
2 f ( , )

h

h
C

Bm B d
i B

λ λ
π λ

= ∫ , h=1,…,s which is also a continuous function of the 1+n2 variables 

in Ch and δγ ≤ij , i, j=1,…,n.  In particular it is a continuous function of a ijij γ+  with δγ ≤ij .   

For B = A we have , h=1,…,s.  Since the integral is continuous it cannot jump from  

to  and the two must be equal and have the common value m

( )hn A m= h ( )hn A

( )hn B h, h=1,…,s for all B with δ≤γ ij , 

i,j=1,…,n. 

Corollary : If W = (
j

i
ij w

w
w ≡ ) is consistent, then given ε > 0, there is a δ=δ ε) > 0 such that if ( δγ ≤ij , 

uniformly for all i and j, the matrix B = ( ijijw ) has exactly one positive real eigenvalue in the circle 

ε<− nz  that is largest in modulus, and all other eigenvalues of B lie within the circle ε<z . 

γ+

Proof: The only non-zero eigenvalue of a consistent matrix is n = Trace (A). Theorem 1 implies that  B has 
exactly one eigenvalue, λ1, in the circle ελ <− n .  It is real, for otherwise, if it were complex both it 

and its complex conjugate would have the same modulus and both would fall in the circle ελ <− n  

Proceedings – 6th ISAHP 2001 Berne, Switzerland 388 



contradicting the fact that ελ <− n  contains only one eigenvalue of B.  Further, ελ <− n1  implies 

ελε +<<− nn 1  and hence λ1>0.  By Theorem 1, all other eigenvalues must be in the circle ελ < .  

Thus λ1 ≡ λmax is real and positive and dominates all other eigenvalues in modulus. 
 
Theorem 2, stronger than theorem 1, is important in practical applications and is more recent.  Its proof is 
found in [5].  In the reference the authors also show how to obtain the coefficients in the series expansions. 
 
Theorem 2: If 8 is an eigenvalue of A of multiplicity 1, then for sufficiently small ∗t∗, there is an 
eigenvalue 8(t) of A(t) such that 8(t) = 8 + t 8(1) + t28(2) + … .  Also there are right and left eigenvectors w(t) 
and v(t), respectively, associated with 8(t) for which v( T)(t) w(t) = 1, and w(t) = w + t w(1) + t2w(2) + … , v(t) 
= v + t v(1) + t2v(2) + … . 
 
 
The following simple and elegant proof of this theorem was communicated to me by Professor Jerry L. 
Kazdan of the University of Pennsylvania. It can be extended to the left eigenvector without difficulty. 
 
Given a polynomial p(x,t) = xn + an-1(t)xn-1 + …+ a1(t)x + a0(t) whose coefficients depend smoothly on a 
parameter t.  Assume at t = 0 the number s = c is a simple root of the polynomial p(c,0) = 0.  Show that for 
all t sufficiently near 0 there is a unique root  x(t) with x(0) = c that depends smoothly on t.  To see this note 
that given p(c,0) = 0 we want to solve p(x,t) = 0 for x(0) = c.  This is immediate from the implicit function 
theorem.  Since x(0) = c is a simple zero of p(c,0) = 0, the derivative px(c,0) is not zero. 
 
The example p(x,t) := x3 – t = 0, so (x,t) = t1/3, shows this may not be true at a multiple root. 
 
Given a square matrix A(t) whose elements depend smoothly on a real parameter t, if  8 = 80 is a simple 
eigenvalue at t = 0, show that for all t near 0 there is a corresponding eigenvalue and (normalized) 
eigenvector that depend smoothly on t. 
 
Although we will not use it, the eigenvalue part is immediate from the previous problem.  It is the 
eigenvector aspect that takes a bit more work. 
 
Given A(0)X0 = 80 for some vector X0 with ||X0|| = 1, we want a function 8 (t) and a vector X (t) that depend 
smoothly on t with the properties 
 

A(t)X(t) = 8(t)X(t), 〈X0, X(t)〉 = 1, and   8(0) = 80, X(0) = X0. 
 
We could also have used the slightly more complicated normalization ||X(t)||2 = 1. 
 
Of course the proof uses the implicit function theorem. 
 
SOME BACKGROUND ON THE IMPLICIT FUNCTION THEOREM.  If H :   Η  →  , say we want to solve the 
equations H(Z,t) = 0 for Z = Z(t).  These are N equations for the N unknowns Z(t).  Assume that Z = Z0 is a 
solution at t = 0, so H(Z0,0) = 0.  Expanding H in a Taylor series in the variable Z near Z = Z0 we get 
 

H(Z,t) = H(Z0,t) + HZ(Z0,t)(Z – Z0) + …, 
 
Where HZ is the derivative matrix and … represent higher order terms.  If these higher order terms were 
missing then the solution of H(Z,t) = 0 is simply Z – Z0 = – [HZ(Z0,t)]-1 H(Z0,t), that is Z = Z0 – [HZ(Z0,t)]-1 
H(Z0,t).  This assumes that the first derivative matrix HZ(Z0,0) is invertible for all t near zero).  If there are 
higher order terms, the implicit function theorem says that there is still a solution Z(t).   The key assumption 
is that the first derivative matrix HZ(Z0,0) is invertible.  Although we assume t 0 , the identical ideas work 
if the parameter t 0 k. 
 
We may assume that 8(0) = 0.  Write 
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To solve: F(X, 8, t) = 0 for both X(t) and 8(t) near t = 0.  In the notation of the previous paragraph, Z = (X, 
8) and H(Z,t) = F(X, 8, t).  Thus the derivative matrix HZ involves differentiation with respect to both X and 
8. 
 
We now compute the derivate matrix at t = 0 with respect to the parameters X and 8.  The directional 
derivative with respect to X in the direction of a vector V is 
 

0

( , , )
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d F X sV t
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while the directional derivative with respect to 8 in the direction of a scalar r is 
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Thus at t = 0 the derivative with respect to X and 8 is the partitioned matrix 
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For the implicit function theorem we need the matrix on the right to be invertible.  It is enough to show its 
kernel is zero.  Thus, say A(0) V – X0r = 0 and 〈X0, V〉 = 0.  From the first equation we find A(0)2V = 
rA(0)X0 = 0. 
 
By assumption, the eigenvalue 80 = 0 has multiplicity one so V = (const) X0.  But then 〈X0, V〉 = 0 gives V = 
0.  Consequently also r = 0. 
 
Since the derivative matrix F”(X, 8, 0) is invertible, by the implicit function theorem the equation F(X, 8, t) 
= 0 has the desired smooth solution near t = 0. 
 
Remark: We note that a small perturbation of a nonnegative not necessarily reciprocal matrix can give rise 
to a principal eigenvalue that is not near the original eigenvalue.  The nonnegative matrix A = ( ) with 
a

ija
i,i+1 = 1, aij =0 otherwise, has all its eigenvalues equal to zero.  The same matrix with an1  replaced by 

ε  , where ε > 0 is small, has the maximum eigenvalue maxλ = ε 1/ n which tends to one with increasing n. 

Although maxλ  changes continuously with the coefficient ε , its value becomes large for small ε.  Yet this 
example does not violate the perturbation theorems above. 
 

Given the positive vector w = (w1,…, wn)  and the matrix W = (
j

i

w
w

) derived from w, a reciprocal 

perturbation of W is a matrix A = ( ) where ija ij
j

i
ij w

w
a ε= , , thus the matrix1−= ijji εε )( ijE ε≡ is 

positive and reciprocal .  A reciprocal perturbation is said to be small if ijε is close to one for all i and j. We 
have: 
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Theorem 3: Let A(t) be a positive reciprocal matrix that is a small reciprocal perturbation of a consistent 
matrix W, then A has a simple positive real eigenvalue maxλ that dominates all other eigenvalues of A in 
modulus and to which correspond right and left eigenvectors w and v, respectively. 
 
Thus for a near consistent matrix we have a principal eigenvalue and eigenvector without use of the 
theorem of Perron. The problem remains as to how to bring an arbitrary judgment matrix that is a positive 
reciprocal matrix to have a status of near consistency and what theory justifies it.  
 
 
Note that with a reciprocal perturbation we ensure that λmax ≥ n which helps determine the validity of w as a 
priority vector.  We have 
 

maxmax
1

//][/ λλε ==== ∑∑
=

iiiiijj ij

n

j
ij wwwAwwwa . 

 
The computation 
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.max n≥

 reveals 

that λ   Moreover, since      for all x > 0, with equality if and only  if x = 1, we see 

that 

2/1 ≥+ xx

n=maxλ  if and only if all γij  = 1, which is equivalent to having all aij = wi  / wj.  The foregoing 

arguments show that a positive reciprocal matrix A has n≥maxλ , with equality if and only if A is 
consistent. 
 
 
5.  The Priority Vector of a Near Consistent Matrix 

 
Let us prove that the principal eigenvector is the priority vector of a near consistent matrix without using 
Perron’s proof.  We use [2, p. 175] for a part of our proof. 
 
Note that the Hadamard product A = Wo E  can be written as A = Dv E Dv

-1
   where Dv and Dv

-1
   are diagonal 

matrices with the vectors w and w-1on their diagonals respectively. 

Theorem 4: An arbitrary near consistent positive reciprocal matrix A satisfies lim
k

T kk

A e cw
e A e→∞

= , where c 

is an arbitrary constant. 

Proof: ij
j

i
ij w

w
a ε=  implies ∑ ∑ , and

= =

==
n

j

n

j i

j
ijij w

w
a

1 1
maxλε
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1
( )E Eλ ,  1( ),ij ji ijE ε ε ε −≡ = is a 

max

1
( ) 1E Eeλ =  (E is row stochastic).  Thus, ( )max

1
( )lim

k

Ek
E Vλ→∞

= ≡
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1 2
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and we have 0, 1,..., ,jv j> = n
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Why is the eigenvector close to the priority vector? We have 
 

n
wwa

n

n

i

n

j
ijij

max

1 1
2 )/(1 λ∑ ∑

= =

=  

This says that the matrix W = (
j

i

w
w

) formed from the principal eigenvector w is as close to A as maxλ  is 

close to n or as near consistency is close to consistency.  Closeness may also be studied as a nonlinear 
programming minimization problem: Find the vector w > 0 that minimizes λ  subject to the 

constraints ij
j

i
ij w

w
a ε= , . 1−= ijji εε

We show below that the perturbation argument extends to any reciprocal matrix even if it is not near 
consistent.  Briefly, the argument consists in establishing that the space of reciprocal matrices is strongly 
connected in the sense that given any two reciprocal matrices one matrix can be reached from the other by 
continuous Hadamard product reciprocal perturbations. 
 
 
6.  Structural properties of Positive Reciprocal Matrices 
 
We make the following observations on the structure of reciprocal matrices. The elementwise product of 
two n by n reciprocal matrices is a reciprocal matrix.  It follows that the set of reciprocal matrices is closed 
under the operation Hadamard product.  The matrix eTe is the identity: eTe = eTeoeTe = eeT and AT is the 
inverse of A, AoAT = AToA = eTe.  Thus the set G of n by n reciprocal matrices is an abelian group.  Because 
every subgroup of an abelian group is normal, in particular the set of n by n consistent matrices is a normal 
subgroup (EoWoET = W) of the group of positive reciprocal matrices. 

TT

 
Two matrices A and B are R-equivalent (A R B) if, and only if, there are a vector w and positive constants a 
and b such that  (1/a) Aw = (1/b) Bw.  The set of all consistent matrices can be partitioned into disjoint 
equivalence classes.  Given a consistent matrix W and a perturbation matrix E such that Ee = ae, a > 0 a 
constant, we use the Hadamard product to define A  = WoE such that (1/a) A w = (1/n) Ww.  A and W are 
R-equivalent.   There is a 1-1 correspondence between the set of all consistent matrices and the set of all 
matrices A defined by such Hadamard products.  An R-equivalence class Q(W) is the set of all A  such that 
A R W.  The set of equivalence classes Q(W) forms a partition of the set of reciprocal matrices.  It is known 
that all the elements in Q(W) are connected by perturbations E, EΝ, EΟ,..., corresponding to a fixed value 
of a > 0 such that (EoEΝoEΟ...)e = ae.  Thus given an arbitrary reciprocal matrix A, there exists an 
equivalence class to which A belongs.         
 
DeTurck [1] has proved that: The structure group G of the set of positive reciprocal n x n matrices has 2n! 
connected components.  It consists of nonnegative matrices that have exactly one nonzero entry in each row 
and column.  These matrices can be written as D S, where D is a diagonal matrix with positive diagonal 
entries and S is a permutation matrix, and the negatives of such matrices.  The connected component G0 of 
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the identity consists of diagonal matrices with positive entries on the diagonal. If A is a positive reciprocal 
matrix with principal right eigenvector w = (w1, w2,...,wn)T and D , G0 is a diagonal matrix with positive 
diagonal entries d1, d2,...dn then ID(A) = DAD-1 is a positive reciprocal matrix with principal eigenvector w  
= (d1w1,..., dnwn)T.  The principal eigenvalue is the same for both matrices.  If v = (v1, v2,...,vn)T and w = (w1, 
w2,...,wn)T are two positive column vectors, then conjugation by the diagonal matrix Dvw with entries 
v1/w1,...,vn/wn on the diagonal maps Aw onto Av.  The corresponding diagonal matrix Dwv provides the 
inverse map.  Moreover, Dwv maps the consistent matrix of Aw to the consistent matrix of Av. 
 
 
7. The General Case: How to Transform a Positive Reciprocal Matrix to a Near Consistent Matrix 

To improve the validity of the priority vector, we must transform the matrix to a near consistent one.  In 
practice, the judgments available to make the comparisons may not be sufficient to bring the matrix to near 
consistency.  In that case we abandon making a decision based on the information we have, and must seek 
additional knowledge to modify the judgments. 
 
The final question then is how to construct the γ perturbations in a general reciprocal matrix.  Inconsistency 
in a matrix can be due to a single entry (entering the reciprocal value by mistake) which if appropriately 
changed the matrix becomes near consistent.  A second observation is that a judgment matrix already has 
some built in consistency; it is not an arbitrary reciprocal matrix.  It should be meaningful to try and 
improve its consistency.  Because the eigenvector is necessary for representing dominance, we must use an 
algorithm based on the eigenvector, whose existence is assured by Perron’s theory for positive matrices, to 
improve the consistency of a matrix until it is near consistent.   
 
A metric space X is well chained if, for any two points we have a sequence of points of distance d (x i ,x j )  
< γ  joining them with γ > 0 arbitrarily small, uniformly chosen for all i and j.  This is the property we need 
in order to bring an arbitrary positive reciprocal matrix close to a consistent matrix that then has its 
eigenvalue and eigenvector as perturbations of those of the consistent matrix to which it is close. We have 
the following theorem from topology: 
 
Theorem 5:  If X is connected, X is well chained. 
 
Basically we have an existence theorem that ensures that we can transform an arbitrary positive reciprocal 
matrix to a near consistent matrix.  Now we show how to make this transformation. 
 
For a given positive reciprocal matrix A= [aij] and a given pair of distinct indices k > l, define A(t) = [aij(t)] 
by akl(t) = akl + t, alk(t) = (alk + t) –1, and aij(t) = aij  for all i > k, j > l , so A(0) = A.  Let maxλ (t) denote the 
Perron eigenvalue of A(t) for all t in a neighborhood of t = 0 that is small enough to ensure that all entries of 
the reciprocal matrix A(t) are positive there.  Finally, let v = [vi] be the unique positive eigenvector of the 
positive matrix AT that is normalized so that vTw = 1. Then a classical perturbation formula [4, theorem 
6.3.12] tells us that  
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We conclude that  
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wvawv
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2max −=
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∂λ
 for all i,j=1,…,n. 

Because we are operating within the set of positive reciprocal matrices, =
∂

∂

jia
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-
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∂ maxλ
for all i and j. 
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Thus, to identify an entry of A whose adjustment within the class of reciprocal matrices would result in the 
largest rate of change in maxλ we should examine the n(n-1)/2 values { and select 
(any) one of largest absolute value.  For the pairwise comparison matrix in Table 1, v = (.042, .114, .063, 
.368, .194, .168, .030, .021)

jiwvawv ijjiji >− },2

T.  
 

 
Table 1 A Family’s House Buying Pairwise Comparison Matrix for the Criteria 

 
  

  
Size 

 
  Trans 

 
 
Nbrhd

 
 
Age

 
  
Yard

  
 
Modern
 

 
 
Cond 
 

 
  
Finance 

Normalized  
Priority 
Vector w 

Size 
Trans. 
Nbrhd. 
Age 
Yard 
Modern 
Cond. 
Finance 

1 
1/5 
1/3 
1/7 
1/6 
1/6 
3 
4 

5 
1 
3 
1/5 
1/3 
1/3 
5 
7 

3 
1/3 
1 
1/6 
1/3 
1/4 
2 
5 

7 
5 
6 
1 
3 
4 
7 
8 

6 
3 
3 
1/3 
1 
2 
5 
6 

6 
3 
4 
1/4 
1/2 
1 
5 
6 

1/3 
1/5 
1/2 
1/7 
1/5 
1/5 
1 
2 

1/4 
1/7 
1/5 
1/8 
1/6 
1/6 
1/2 
1 

.175 

.062 

.103 

.019 

.034 

.041 

.221 

.345 
8max = 8.811,         Consistency Ratio (C.R.) =.083                                     

 
 
Table 2 gives the array of partial derivatives (3) for the matrix of criteria in Table 1 with a = 6 which was 
its original value later improved to ½ as it is now.  

37

 
 

Table 2 Partial Derivatives for the House Example 
 

Size Trans. Nbrhd. Age Yard Modern Cond. Finance
Size - 0.001721 0.007814 -0.00041 0.00054 0.000906 -0.08415 -0.03911
Trans. - - -0.00331 0.001291 0.002485 0.003249 -0.06021 -0.01336
Nbrhd. - - - -0.00091 -0.00236 -5.7E-05 0.008376 -0.07561
Age - - - - -0.01913 -0.03372 0.007638 0.094293
Yard - - - - - -0.01366 -0.01409 0.041
Modern - - - - - - -0.02599 0.029
Cond. - - - - - - - 0.006
Finance - - - - - - - -

309
355
487

 
 
The (4,8) entry in Table 2 (in bold print) is largest in absolute value. Thus, the family could be asked to 
reconsider their judgment (4,8) of Age vs. Finance.  One can then repeat this process with the goal of 
bringing the C.R. within the desired range. If the indicated judgments cannot be changed fully according to 
one’s understanding, they can be changed partially. Failing the attainment of a consistency level with 
justifiable judgments, one needs to learn more before proceeding with the decision. 
 
Three other methods, presented here in order of increasing observed efficiency in practice, are conceptually 
different. They are based on the fact that 
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This suggests that we examine the judgment for which γij is farthest from one, that is, an entry aij for which 
aij wj / wi is the largest, and see if this entry can reasonably be made smaller.  We hope that such a change 
of aij also results in a new comparison matrix with that has a smaller Perron eigenvalue. To demonstrate 
how improving judgments works, let us return the house example matrix in Table 1.  The family first gave 
a judgment of 6 for the a37 entry.  This caused the matrix to have C.R. = .17, which is high.  To identify an 
entry ripe for consideration, construct the matrix γij (Table 3).  The largest value in Table 3 is 5.32156, 
which focuses attention on a37 = 6.  
 
 

Table 3: γij = aij wj/wi 
 
 
 
 
 
 
 
 
 
 
 
 
 
How
eigen
be w
same
two. 
and w
towa
from
famil
judgm
 
A ref
is re
eigen
descr
progr

Proce
  
1.00000 1.55965 3.26120 0.70829 1.07648 1.25947 0.32138 0.48143 
0.64117 1.00000 1.16165 1.62191 1.72551 2.01882 0.61818 0.88194 
0.30664 0.86084 1.00000 0.55848 0.49513 0.77239 5.32156 0.35430 
1.41185 0.61656 1.79056 1.00000 0.59104 0.51863 1.36123 2.37899 
0.92895 0.57954 2.01967 1.69193 1.00000 0.58499 1.07478 1.78893 
0.79399 0.49534 1.29467 1.92815 1.70942 1.00000 0.91862 1.52901 
3.11156 1.61765 2.25498 0.73463 0.93042 1.08858 1.00000 0.99868 
2.07712 1.13386 2.82246 0.42035 0.55899 0.65402 1.00133 1.00000 

 

 does one determine the most consistent entry for the (3,7) position? When we compute the new 
vector  w after changing the (3,7) entry, we want the new (3,7) entry to be w3 / w7 and the new (7,3) to 

7 /w3 . On replacing a37 by w3 / w7 and a73 by w7 / w3 and multiplying by the vector w one obtains the 
 product as one would by replacing a37 and a73 by zeros and the two corresponding diagonal entries by 
 We take the Perron vector of the latter matrix to be our w and use the now-known values of w3 / w7 

7 / w3 to replace a37 and a73 in the original matrix. The family is now invited to change their judgment 
rds this new value of a37 as much as they can. Here the value was a37 = 1/ 2.2, approximated by 1/ 2 
 the AHP integer valued scale and we hypothetically changed it to 1/2 to illustrate the procedure. If the 
y does not wish to change the original value of a37, one considers the second most inconsistent 
ent and repeats the process. The procedure just described is used in the AHP software Expert Choice.   

inement of this approach is due to P. Harker. One by one, each reciprocal pair aij and aji in the matrix 
placed by zero and the corresponding diagonal entries aii and ajj are replaced by 2, the Perron 
value maxλ is computed. The entry with the largest resulting maxλ  is identified for change as 
ibed above. This method, unpublished, is in use in the Analytic Network Process (ANP) software 
am Super Decisions [12]. 
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