NOTES ON THE USE OF COMPATIBILITY INDEX IN THE AHP

Chonnam National University
KOREA

Min-Suk YOON msyoon@chonnam.ac.kr

Min-Suk YOON

1. Introduction

- compatibility [similarity] index (S.I.)
 - comparing two pairwise comparison matrices
- correct meaning of S.I. and correct use of S.I.
 - ✓ not to lead to unexpected decision.
- compatibility for a hierarchy
- the sensitivity of the S.I. to improve

Min-Suk YOON

Compatibility [Similarity] Metric

 $S.I.=n^{-2}\cdot e^TA\circ W^Te=\lambda_{max}/n$ where \circ is the Hadamard product, W is the matrix of ratios of the principle right eigenvector of a pairwise comparison matrix, A

 S.I. becomes 1 if and only if the two matrices are exactly same. Otherwise, S.I. goes beyond 1.

Critical Value of S.I.

Source: Saaty 1996, p.63

A. Correct Use of S./. from Inconsistency

		c 2	с 3	C 4	Priori •	CR			c 2	с 3	C 4	Priori	CR
Α	1	2	4	8	0.53	0.0	B -	1	1	6	8	0.51	0.1
		1	2	4	0.27				1	1	4	0.28	
			1	2	0.13					1	2	0.14	
				1	0.07						1	0.06	
W						0.0	٧						0.0
$S.I._AB = 1.073 > 1.067$ $S.I._WV = 1.005 = 1.0$													

Min-Suk YOON

S.I. for an Entire Hierarchy

$$DSIH = \frac{SIH_{vw}}{SIcH_{vw}} = \frac{\sum_{h=1}^{H} SI_{vw}^{(h)}}{\sum_{h=1}^{H} SIc_{vw}^{(h)}}$$

where
$$\sum_{i=1}^{n_h} v_i^{(h)} = \sum_{i=1}^{n_h} w_i^{(h)} = 1$$

 $SI_{vw}^{(h)}$: S.I. between two priorities vectors v and w in the hth layer

 $SIc_{vw}^{(h)}$: Critical value of S.I. between two priorities vectors v and w in the hth layer

If *DSIH* is equal or less than 1,

two sets of judgments for an entire hierarchy are not significantly different

C. Sensitivity of S.I.

- If priority of element is smaller, the sensitivity even by small change is possibly higher.
- A few ways to measure the difference between the two vectors

$$SI_{vw} = \frac{1}{n^2} \cdot e^T V \circ W^T e = \frac{1}{n^2} \cdot e^T \left[\frac{v_i}{v_j} \cdot \frac{w_j}{w_i} \right] e$$
$$= \frac{1}{n^2} \sum_{i} \sum_{j} \left(\frac{v_i}{w_i} \cdot \frac{w_j}{v_j} \right) = \left(\frac{1}{n} \sum_{i} \frac{v_i}{w_i} \right) \cdot \left(\frac{1}{n} \sum_{j} \frac{w_j}{v_j} \right)$$

An alternative way: Weighted S./. (WS/)

$$WSI = \left(\sum_{i} \frac{w_i}{v_i} \alpha_i\right) \cdot \left(\sum_{j} \frac{v_j}{w_j} \alpha_j\right), \text{ where } \sum_{i} \alpha_i = 1$$

Concluding Remarks

- The role of S.I.
- From the comparison of two matrices
- Two priorities vectors, similar or not