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Summary:  When a decision maker decides each element of a pairwise comparison matrix on the basis 
of linear scale, the entropy method is expected to produce a weight vector the closest to the true weight 
vector. On the contrary when a decision maker decides on the basis of exponential scale, the eigenvector 
method and the geometric mean method are expected to produce weight vectors closer to the true weight 
vector. 

 
 

1. Introduction 
 

Various methods, such as the eigenvector method (EGV), the geometric mean method (GMM), and the 
entropy method (ENT) [1], have been proposed to estimate a weight vector from pairwise comparison 
data. In this paper we will show that when a decision maker decides each element of a pairwise 
comparison matrix A={ a } on the basis of linear scale with regular intervals, among the eigenvector 

method, the geometric mean method, and the entropy method, the entropy method produces a weight 
vector which is statistically the closest to the true weight vector. 

ij

 
 
2. Multiplicative Error and Additive Error 
 
Let  A={ a } be a measured n×n pairwise comparison matrix, W={ } be the consistent n×n pairwise 

comparison matrix, be a true weight vector, and E={ e } be an n×n error matrix associated with A 

and W. In general, A can be expressed as a function of  W and E.  
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     A= f ( W, E )    (1) 
     
In this paper we will consider two types of error functions, multiplicative error and additive error. In case 
of multiplicative error with error matrix M, f(W,M) is expressed by Eq.(2), and in case of additive error 
with error matrix D, f(W, D) is expressed by Eq.(3). 
 
    f ( W,  E ) = W * M   (2) 
 
    f ( W,  D ) = W + D   (3) 
 
Here, the operation * in Eq.(2) indicates the matrix operation for elementwise product, where = b × 

 for D=B*C, and the operation + in Eq.(3) is the ordinary matrix addition, where = b + c  for 

D=B+C. 
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3. Theorems concerning Scale Type and Error Type 
 
Since we have introduced two types of  errors in Sec.2, we will give two theorems which relate an error 
type and a scale type. In the case of a linear scale as in Fig.1, if (= / ), true judgment value of a 

decision maker, is distributed uniformly over the whole scale and the decision maker fixes his or her 
judgment value to a , which is one of the nearest discrete values, (= - w ), the difference from 

to , distributes uniformly over [ -0.5 ,  +0.5 ]. Therefore, following Theorem 1 is obtained. 
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[  Theorem 1 ] 
If = / , true (or consistent) judgment value of a Decision Making Unit on the 9-stage linear scale 

for the ( i , j  )th element of a measured pairwise comparison matrix A={ }, is distributed uniformly 

over [ 0.5 , 9.5 ], , the ( i , j )th element of  the additive error matrix D={ }, is distributed uniformly 

over [ -0.5 ,  +0.5 ], where takes a discrete value among 1, 2, 3, 4, 5, 6, 7,  8, and 9.■  
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Smilarly in the case of an exponential scale as in Fig.2, the same discussion holds if  we take logarithms 
on the exponential scale, and following Theorem 2 is obtained.  
 
[  Theorem 2 ] 
If = / , the true ( or consistent ) judgment value of a Decision Making Unit on the 5-stage 

exponential scale for the ( i , j )th element of a measured pairwise comparison matrix A={ } is 

distributed log-uniformly over [ , ], m , the ( i , j )th element of the multiplicative error matrix 

M={ }, is distributed log-uniformly over [ , 2 ], where  takes a discrete value among 1, 2, 

4,  8, and 16. ■ 
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4. Simulation Experiment 
 
In order to compare the three weight estimation methods, EGV, GMM, and ENT, in its weight estimation 
accuracy under the two types of error structures, following simulation experiment is carried out.  
 
1. Assume a true weight vector . 0x

( n=4 and =(0x
10
1

,
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,
10
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,
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4

) T in our experiment ). 

2. Make consistent pairwise comparison matrix W={ } ( = / ) from the true weight vector 

. 
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3. Make a set of perturbed pairwise comparison matrices from the consistent matrix W by applying 

additive or multiplicative error to each element of  W. 
4. Apply the three weight estimation methods, EGV, GMN, and ENT, to each of perturbed matrices. 

Let , , and  be estimated weight vector by EGV, GMM, and ENT, respectively. 1x 2x 3x
5. For each sample from the perturbed set, calculate d , , and d , the distance from the true 

weight vector  to each of estimated weight vector ( i=1, 2, 3 ). 
01

ix
02d 03

0x
6. Average the distance  ( i=1, 2, 3 ) over the perturbed set.    id0
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5. Experiment Result 
 
Tables 1 and 2 show averaged distances 01d , 02d , and 03d , for the case of additive errors distributed 
uniformly over [ -0.5 , +0.5 ] and the case of multiplicative errors distributed log-uniformly over 

[
2

1
, 2 ], respectively.  

 
 
 
From Table 1 and other related simulation experiment result, it is shown that under the additive error the 
entropy method produces a weight vector statistically the closest to the true weight vector (as depicted in 
Fig.3), and from Table 2 and other related simulation experiment result, it is shown that under the 
multiplicative error both the eigenvector method and the geometric mean method produce weight vectors 
which are statistically closer to the true weight vector  (as depicted in Fig.4). 
 
 

Table 1. Average distances under additive errors uniformly distributed over [-0.5, 0.5] 
 
 

 n=4 n=8 n=12 

01d  0.100940 0.060048 0.073549

02d  0.101054 0.060453 0.073924

03d  0.081136 0.038540 0.050749

 
 
 
 
 
 
 
 

Table 2. Average distances under multiplicative errors log-uniformly distributed over [
2

1
, 2 ] 

  n=4 n=8 n=12 

01d  0.007990 0.004792 0.003394

02d  0.007989 0.004791 0.003393

02d  0.008179 0.005308 0.004027

 
 
 
 
 
 
 
 
6. Conclusion 
 
Together with the simulation experiment result in Sec.5 and the two theorems in Sec.3, it is concluded 
that when a decision maker decides his or her -judgment on widely-used linear scale basis, the entropy 

method is expected to produce a weight vector which is the closest to the unknown true weight vector. To 
analyze how the error is distributed under more general conditions is one of the future research problems.  
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Fig.1 True judgment , measured discretized judgment , ijw ija
    and the error on the 9-stage linear scale ijd
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Fig.2 True judgment , measured discretized judgment ,  ijw ija

and the error on the 5-stage exponential scale ijm
 
 

 
 

         EGV            GMM           EGV                GMM 
 
 
 
 

             True Weight 
 
 

     True Weight 
 
 
 
 
 
 

1 2 4 8 12

          ENT                 ENT 
 

Fig.3 Schematic diagram for relative position of      Fig.4 Schematic diagram for relative position of 
the four weight vectors under additive error       the four weight vectors under multiplicative 

error     
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